
NPO Accounting action plan (draft)

Christopher Allan Webber

2014-09-29 Mon

1 Introduction and summary

The NPO Accounting project exists to �ll a gap where other accounting projects have fallen short. Other
accounting systems are either proprietary and un-hackable, or free but not nearly as �exible as needed to
meet the needs of an organization such as the Software Freedom Conservancy.

1.1 Current state

The project builds itself o� of Ledger, a programmer's accounting tool. With a robust set of built-in reporting
and querying tools, an elegant and expressive syntax, Ledger provides the groundwork to build the system
you need.

Unfortunately, the downside of building o� of Ledger is threefold:

� For a much smaller organization, the technical expertise to customize an accounting work�ow based
on command line tools may not be there. It would be good to have a system that already does the
technical heavy lifting on the backend and provides a simple, clear user interface while still allowing
for �exibility.

� For an organization as large as Conservancy, eventually the system grows to a state of technical
complexity where in order to do basic bookkeeping, one must be highly technically inclined. Being
able to task o� basic bookkeeping becomes hard.

� Once the books have grown to the size of Conservancy's, reports can take a very long time to execute
if they re-run the command line tool many times. (This is because every time the tool is run, it must
re-load the entire accounting history into memory.)

The NPO Accounting project seeks to resolve all of these issues. At the present moment, the last is
already addressed, with tooling built so that running multiple commands over extremely large data sets does
not bear the weight of having to continuously reload this data. With this foundation in place, we are set to
build the rest of the system.

1.2 Future state

So what will the NPO Accounting project look like when the project reaches maturity? The general philoso-
phy of the project is: "batteries included, and the rest is scriptable." By this we mean: you don't *have* to
be a technically savvy programmer to use the basics of the system. A web interface will exist which guides
you through the most common tasks of entering data and generating reports. But the moment that your
organization has special needs, an API exists where you can set a programmer to the task of adding new
features. Most features added will be a one-time job: once they are written, non-technical users can continue
to take advantage of them through the user interface.

This will require quite a bit of technical work, but the general direction of this work has already been
determined, as discussed in the Technical Plan section of this document.

User interface design will be done through a process of spec'ing out the design, sketching quick wireframes,
making mockups, then executing.

1



1.3 A word on branding

Before we get into the technical plan for the project, a word on branding.
"NPO Accounting" is the current term for the project, but probably should not be the eventual name of

the project. For one thing, this project should be usable far outside the world of nonpro�ts. While addressing
the needs of nonpro�ts is still a large goal of the project, we believe that this project will useful for various
types of organizations, large and small, as well as a feasible system for personal �nance particularly for those
who are excited about providing a friendly and attractive user interface for themselves and their families
while also being

Aside from this, "NPO Accounting" is simply not a very catchy term. Likely, a new one will be developed
soon. One likely possibility is AcornCount. Future versions of this document may be revised to include the
new name.

2 Technical plan

2.1 Technologies used

The NPO Accounting project will make use of the following technologies:

� *Ledger:* Flexible command line accounting tool.

� *Python:* Existing bindings for ledger are already written in Python.

� *Asyncio:* A python library for asynchronous execution. Writing the NPO Accounting project in
this framework will allow us to build the system in such a way that running long queries or other
complicated procedures do not block the user interface, resulting in a better user experience.

� A wide variety of existing nice python web development libraries, such as the *Jinja2* templating
language.

2.2 User interface

The user interface for the project will be web-driven.
There will be a "simple queries" page that shows some amount of recent entries with an interface to add

new entries as well as edit existing entries. The interface will be simple enough to walk through adding a
standard ledger entry, but will also verify the

Reports can be set up to "immediately display" or "be deferred". Deferred reports are ones known
to take some time. . . instead of displaying immediately to the user, they show up in a "pending reports"
button. When the report has �nished executing, the backend noti�es the frontend and a noti�cation becomes
available. At this point the user can select the report and view it.

2.3 Scripting API

The backend API for de�ning new functionality will be written in Python. Plugins will be able to be written
to add new queries, new reports, and new

These will consist of:

� Logic to interface with the Ledger API to insert, query, or manipulate data.

� Controller logic for receiving and returning commands to the frontend, as well describing to the frontend
how to display and process information.

� Hooks for task processing and asynchronous communication with the frontend.

2



2.4 Primary/Replicant setup and synchronization

The NPO Accounting project doesn't use a traditional SQL database. . . instead, it stores transaction history
in plaintext �les. This actually provides a tremendous advantage. . . not only are the �les easy to manipulate,
they can be stored in a modern version control system like git. This means that at any time, one can travel
backwards and forwards in history to see what the state of one's accounting �les looked like in June 2008.
Not just the state of the books from June 2008, but literally the exact �les from June 2008! This is a
powerful feature for auditing your �nances. It also greatly reduces the risk that past work will somehow be
accidentally lost. It's always there in the version control history!

However, this does pose a challenge. Assuming that many transactions are scheduled to happen at the
same time, some writing (such as adding or editing new transactions) and some reading (generating reports,
doing queries, etc). . . we don't want users to wait around for reports to �nish just to enter their information,
especially if those reports are especially complex. Is there any way to prevent this system from blocking?

Borrowing an idea from traditional database design, NPO Accounting will have "primary" and "replicant"
checkouts. All of these are checkouts of the repository from git. The "primary" account can do writes to
the �les and commit them when it is done and has a queue of write submissions. The "replicants" are
read-only. . . they can receive queries and read from �les to prepare information for the user, but to avoid
collisions, they never write to disk directly. Queries and reports are dispatched to them and returned to be
processed for viewing by the user. The "primary" checkout informs the "replicant" accounts when changes
have been made to the �les, and when the replicants have �nished their current tasks, they update their git
checkouts to the latest database state.

2.5 Updating the python bindings

In addition, the ledger bindings to python are a bit wanting. Bradley Kuhn has plans to improve them,
which will make scripting for this system nicer, but will also bene�t all other users of the ledger Python API.

3 Conclusions

The NPO Accounting project has the right combination of technical robustness, �exibility, and focus on user
experience to do the job. If we can raise enough funds, we should be able to implement all the above to
build a system to help individuals and organizations of all kinds keep themselves �nancially healthy.

3


	Introduction and summary
	Current state
	Future state
	A word on branding

	Technical plan
	Technologies used
	User interface
	Scripting API
	Primary/Replicant setup and synchronization
	Updating the python bindings

	Conclusions

