Spritely
Networked
Communities
Institute

Plurality Research Network Conference

January 13th-15th 2023

This is a lightning talk. so it is given that:
1) Centralized Social Media is Busted
2) We are all here looking forward to
individual-empowered safe online
communities.

We formed a non-profit to help with
just that!

Spritely Institute Founders

’ 4
L

e Christine Lemmer Webber - Open & Social
o ActivityPub, The Spritely Project, MediaGoblin

Spritely Institute Founders (‘"

- [/
&L

e Christine Lemmer Webber - Open & Social
o ActivityPub, The Spritely Project, MediaGoblin

e Randy Farmer - a0+yrs Social Platforms
o Electric Communities, Avatars, E, JSSON

The ActivityPub standard
is greaft for
federated message sharing.

The ActivityPub standard
enables
"follow"” networks. like Mastodon.

ActivityPub Alone Isn’'t Enough

Content survival

Identity migration

Better privacy & security

Stronger anti-abuse & anti-harassment
Context confusion

Richer interactions

What this talk is NOT about:

- Changing the ActivityPub standard

- "Fixing” Mastodon. or other social apps

Our Focus:
Re-Decentralize
Networked Communities

A new foundation:

Secure and distributed is the
default

Your applications
represent you

Our social-stack of objects:

e People
o ldentity, Relationships, Connections
o Communities
o Contexts, Memberships, Moderation
e Applications
o Security, Trust, Consent -> Commerce

No Gatekeepers Required

Mock Demonstration

T'd love for you to Join us, |AStarlight|

A friend of 's is a friend of mine!

Looking forward to it!

T've never heard of that before,

Let me install it!

Sushimon
F’V\A/‘
\’C mm yow“

v e ke & e W

Olay, installed!

Great, now you need a starter dech!

Sushimon
INAAS L
SCla\m 300;7
R AR

-~ 93"“[}—]

What does the agency do for
Alisha?

Contexts and personas
Mechanisms of consent
Decentralized naming
Robust commerce and trade
Safe. cooperative apps

(progress report)

Papers. Platforms. Developers (Oh My)

£ The Heart of Spritely: Dic x | +

C @ QO B https://spritely.institute/static/y 120% ©% L m @8 © a

The Heart of Spritely: Distributed Objects and

Capability Security
Table of Contents

e 1. Introduction
* 2. Capability security as ordinary programming
« 3. Spritely Goblins: Distributed, transactional object programming

2 AN Y =y Egreak

A Scheme Primer

Table of Contents

. .
.

¥ Petnames: A humane approach to secure, decentralized naming
o 3. Hello Scheme!

o 4 Basic types, a few small functions

o 3 Variables and procedures Table of Contents

o 6 Conditionals and predicates

o 7. Lists and "cons”

. % . e 1 The what and why, of petname systems

. teration and recursion 2

o 10. Mutation and other kinds of side effects ™ ﬁpiemeg_pema& .

o 11. On the extensibility of Scheme (and Lisps in general) o 2.1. Smartphone contact list integration

e 12 Scheme in Scheme o 2.2 Web browser integration

R
The following is a primer for the Scheme family of programming languages. It was originally written to aid newcomers to technof 3. Conclusion

developed at The Spritely Institute but is designed to be general enough to be readable by anyone who is interested in Scheme.

"If we ever show a DID to a user we have failed.”
This document is dual-licensed under Apache v2 and Creative Commons Attrit 4.0 Inter; 1 and its source is publicly ay

Names must be human-readable in order to be widely used. Unfortunately, while DIDs and Tor .onion addresses are decentralized and globally
unique, they are not human readable. How can we build user interfaces that real users might actually use? In this paper we provide an overview
R — T S BT, Som Bl eRive, BOWaEIL bIC as of petname systems, a way of mapping humap revadal?l‘e names to cqptograplxicﬂl}' secure names, and describe changes to two user interface
introduction to the RSRS edition of Scheme's standardization! explains its philosophy well designs that we believe that are compatible with intuitive user expectations. We first discuss the smartphone contact list as already
approximating petnames to some degree and discuss how to augment it with secure introduction. We then walk through several changes to
browsers (which may be provided natively or as an extension) which add the functionality of a petname system. By utilizing petname systems
we are able to collectively support individual naming definitions. community curated directories of names, as well as exiting naming authorities
This minimalism means that the foundations of Scheme are easy to learn. The R5RS introduction continues with: such as certificate authorities and the domain name system, government agencies such as trademark offices. and decentralized systems such as
Namecoin.

1. Introduction

Programming languages should be designed not by piling feature on top of feature, but by removing the weaknesses and
restrictions that make additional features appear necessary.

Scheme demonstrates that a very small number of rules for forming expressions, with no restrictions on how they are comp
suffice to form a practical and efficient programming language that is flexible enough to support most of the major programy
paradigms in use today.

1. The what and why of petname svstems

Papers. Platforms. Developers (Oh My)

NLnet grant bootstraps OCapN protocol standardization effort!

“onl

FOUNDATION

‘a Tallon received a grant from NLnet to bootstrap the standardization process of OCapN (Object Capability
Network)]essma has worked with us on previous Spritely projects, including previous NLnet grants related to
1 s. Spritely Institute’s role will be providing direction and support to Jessica, who will leading
the effort

We want to thank NLnet for funding this important work as standardization is critically important for the wider
adoption and implementation of OcapN.

Steps:

» Initial Draft Specs
Form a Community Group (preceding the standards Working Group)
Compliance & Test Suite
Implementers Guide
Submit/Transform to [TBD] standards body

Papers. Platforms. Developers (Oh My)

#goblins

carol
hi, I'm carol!

bob
Hi carol, I'm bob!

alice
Hello all!

alice
Goblin chat workin with handoffs!

Goblin Chat - alice

v AN X

14:38:13

14:38:24

14:38:46

Send!

Papers. Platforms. Developers (Oh My)

WORDS

Essays, etc.

My name is Diana. |
make things but
generally not very well. |
put thoughts here.

ME, ELSEWHERE
Mastodon

GitHub

@ > A Conceptual Introduction to Spritely Goblins

A Conceptual Introduction to Spritely Goblins

| have recently been fascinated by Goblins, of Spritely fame. It is, at present, a library in Guile and
Rackets which provides a model of programming for peer-to-peer applications that makes
permissions a kind of first-class object. In this essay | try to explain what that means, but I'll admit I've
had some trouble with it so far. It's just... alien. It seems like a different order of sorcery than the likes
to which | have grown stubbornly accustom. What it makes easy should be a decade of work. The
principle of least authority -- an asymptote! -- made as practical as a parameter.

Goblins articulates a security paradigm of object capabilities which | find to be an apt name. In this
paradigm, you construct objects that have capabilities, which are functions. If someone in the network
can access a function in an object on your machine, it is only because you gave them permission. /fa

function runs, it is because it is authorized to do so.

That is the model Goblins hands down, not one of peers or users or identities, but of capabilities. You
write object capabilities as stateless functions, and can call upon those capabilities that you can
access. Applications can gather such capability-functions to create complex communal systems built
upon consent. /fa function runs, it is because it is authorized to do so.

This is not some cryptocoin ledger. There is no append-only constraint or proof-of-work friction to
contend with. The magic at work here is subtle rather than costly; its promises are thus paradigmatic

Papers. Platforms. Developers (Oh

(methods Host: localhost Port: 37146
((get-name) name) under certain conditions; type ',show c' for details.
((get-bed) garden-bed)
142 ((plant x y sealed-plant)[] Enter *,help' for help.
(ensure-empty x y) scheme@(guile-user)> (vat-eval alice-vat ($ alice 'plant 5 4 cabbage/approve
(letx ((plant ($ garden-gate 'check-plant sealed-plant)) d))
(new-bed (garden-bed-set garden-bed x y plant))) ;33 <unknown-location>: warning: possibly unbound variable ‘vat-eval'

(bcom (“garden bcom name new-bed garden-gate)))) ice-9/boot-9.scm:1685:16: In procedure raise-exception:

((dig-up x y)

(let ((new-bed (garden-bed-
(bcom (“garden bcom name

ktrace or ',q' to continue.
(define (*visitor bcom name gar lant 5 4 cabbage/approved))
(methods

((get-name) name)
((get-garden-name)

(<- garden 'get-name))
((inspect-garden)

(<- garden 'get-bed))))

lant 4 4 cabbage/approved))
lant 3 4 cabbage/approved))
lig-up 3 4))
(define (“gardener bcom name ga lant 3 4 cabbage/approved))
(methods

((get-name) name)
((get-garden-name)

(<- garden 'get-name))
((inspect-garden)

(<- garden 'get-bed))
((plant x y plant)

(<- garden 'plant x y plant
((dig-up x y)

(<- garden 'dig-up x y))))

lant @ @ winter-squash))

htion, Inc.

details type *,show w'.
elcome to redistribute it
(define the-botanist (garden-ru details
(define the-garden-gate (garden
(define sunflower/approved

(garden-run ($ the-botanist '
(define cabbage/approved

(garden-run ($ the-botanist '
(define our-garden

lant @ 0 winfter-squash))

lant @ @ sunflower/approved))

(garden-run ig-up 0 0))
(spawn “garden > Ca =
"Spritely Institute Community Garden" scheme@(guile-user)> (alice-run ($ alice 'plant @ @ sunflower/approved))
(make-garden-bed 8 8) $9 = #<local-promise>
the-garden-gate))) scheme@(guile-user)> (alice-run ($ alice 'dig-up 0 0))
$10 = #<local-promise>
(define alice (alice-run (spawn “gardener "Alice" our-garden))) scheme@(guile-user)>

(alice-run ($ alice 'plant 1 1 sunflower/approved))

ﬂ A i 1 “garden ®2 | > seiser Guile REPL ommuni ty-gard 721 B L REPL

We’ | i [
e’'re an Institute!
(

Let’'s share research!

Filecoin
Foundation for the
Decentralized
Web

Let’'s Re-Decentralize
Community Together!

randy@spritely.institute
christine@spritely.institute

Papers. Platforms. Developers (Oh My)

Distributed Network Architecture

Apps and Services

Discovery Storage Finance

Communities

Membership Threads & Governance &
Models Posts Moderation

People

Identity & Profiles & Filters & Consent &
Authentication Attributes Subscriptions Capabilities

Cooperating Mutually Suspicious Distributed Objects

Capabilities Trust Frameworks Persistence Connections

SNCI Milestones (Fully Funded) 2022-2025
-

pevapna SSDGESD S DEEIGH N SOEG JTTIIT
bev Beta spec Deviop . Deploy JETTEE

Native 1. spec Develop o Deploy ISTTITED
(many apps!)

Browser 1.0

b > . -

Mobile 1.0 Seec > Devllop Mpha B

O - MobileSecurityand Ul Standards
Allies & Early Early 1M People &

Community First Partners Developers Adopters Communities

Q0320102 03 02 01 02 O3 Qa2 01 02 Q3 Qa
2022 2023 2024 2025

The Agency: Client & Server

Apps and Services

Communities

People

Cooperating Mutually Suspicious
Distributed Objects

The Agency

> Ben's Gaming Hangout —

arlight| , what if my Friend{ \ and T came

board games and pizza?

had pizza...

ello 7Caroli!
of ‘s is a friend of mine...
meet you [AStarlight]! T'lI pickt up the pizzal

ou PM me your address?

I l Oh sure, hang on...] [Send! l

But what we need to enable fully-user
controlled secure communities requires so
much more than federated messaging.

Papers. Platforms. Developers (Oh My)

CGL"Ie Download

Tutorials

A Scheme Primer

This tutorial by Christine Lemmer-Webber and the Spritely Institute is a great
introduction to everything you need to know about the Scheme programming
language, with lots of examples directly applicable to Guile.

