A Verified Compiler for Pure PreScheme:

Final Report for Contract Number F19628-89-C-001

Dino P. Oliva
oliva@corwin.ccs.northeastern.edu
Mitchell Wand
wand@flora.ccs.northeastern.edu
College Of Computer Science
Northeastern University
360 Huntington Avenue, 161CN
Boston, MA 02115, USA

September 23, 1991

Contents

1 Introduction

2 Obtaining an executable Scheme semantics

3 Refining the PreScheme semantics

4 Development of the PreScheme Byte-Code Compiler
5 Development of the Assembler

6 Conclusions and Further Work

7 Language Overview

8 The Semantics
81 Syntax e

10

11

11

CONTENTS

8.2 Value Domains
8.3 Semantic Functions
8.3.1 Auxiliary Valuations,
8.3.2 Main Valuations
8.4 Auxiliary Functions,

9 The Compiler
9.1 Compiler Syntactic Domains
9.2 Compiler Value Domains
9.3 Compiler Semantic Functions
9.3.1 Auxiliary Valuations
9.3.2 Main Valuations

9.4 Machine Instructions
10 Correctness of the PurePreScheme Compiler

11 The Assembler
11.1 Representation of the Abstract Machine
11.2 The Initial Environment
11.2.1 Globals
11.2.2 Procedures
11.3 Representation Of Data
11.4 Assembling Bytecode
11.4.1 Assemble
11.4.2 Assemble-proc-code
11.4.3 Assemble-proc-rep

Abstract

13
14
14
15
20

22
23
23
23
24
25
30

33

This document gives a summary of activities under MITRE Contract Num-
ber F19628-89-C-001. Tt gives a detailed denotational specification of the
language Pure PreScheme. A bytecode compiler, derived from the seman-
tics, is presented, followed by proofs of correctness of the compiler with

1 INTRODUCTION 3

respect to the semantics. Finally, an assembler from the bytecode to an
actual machine architecture is shown.

1 Introduction

The goal of this project was to develop a verified compiler for the PreScheme
programming language. PreScheme is a restricted dialect of Scheme. Tt
is simpler than Scheme in the data types it supports, in its treatment of
procedure objects, and because it makes very limited use of the run-time
stack.

This report is divided into two parts. Sections 1 through 6 give a
chronologically-organized summary of the workplan and the activities per-
formed under this contract. Sections 7 through 11 then give the technical
details and the proof of correctness of the Pure PreScheme compiler.

The workplan was divided into three parts:

1. Analysis of the syntax and semantics of PreScheme. Our activities
here are discussed in Sections 2-3. The detailed syntax and semantics
are presented in Sections 7-8.

2. Development and verification of a translator from Pure PreScheme into
an abstract assembly language. This activity is discussed in Section 4.
The compiler is presented in Section 9, and the proofs are presented
in Section 10.

3. Development of a translator from the abstract assembly language to
the final target language. This activity is discussed in Section 4, and
the details of the assembler are presented in Section 11.

The executable versions of the compiler and assembler, coded in Scheme,
have been electronically delivered and are now being tested by MITRE, Inc.

2 Obtaining an executable Scheme semantics

Our first undertaking was the translation of the denotational semantics of
Scheme into SPS, a type-checked variant of Scheme [11]. The purpose of

3 REFINING THE PRESCHEME SEMANTICS 4

this exercise was to obtain a version of the Scheme semantics which could
be checked and manipulated by machine.

To do this, we obtained from Jonathan Rees a copy of the executable
version of the denotational semantics of Scheme given in Section 7.2 of [7].
We then modified it to fit in the semantic framework given by SPS. The
resulting interpreter was run on a number of examples.

This exercise confirmed that in general, the Section 7.2 semantics was
consistent (i.e., it contained no type errors). However it did reveal a few
shortcomings of the Section 7.2 semantics and the Clinger-Rees executable
semantics (CRES):

e concrete syntax: this is specified in the Report, but it is not included
in the CRES. SPS requires that concrete syntax be fully specified, and
we have done this.

e non-compositionality: the treatment of permute in the Report is some-
what non-compositional, as it works on lists of expressions, rather than
lists of denotations. This is fixed in our version.

e storage allocation for constants: the report is silent on whether storage
for constants is allocated at read time or at evaluation time. We have
chosen the latter.

A more detailed discussion of our findings can be found in [6]. We also
developed some tools to translate a grammar in SPS format to Latex and
to preview the grammar in a window.

3 Refining the PreScheme semantics

Originally, PreScheme was defined as the set of programs which a particular
program (the PreScheme compiler) could translate into C. This definition
was necessarily imprecise. Therefore, our first major task was to produce a
more precise syntax and semantics for PreScheme. We undertook this task
by interviewing the participants (mostly Richard Kelsey) and by examining
the corpus of PreScheme code in the Virtual Machine definition.

As a result of these discussions, we have refined PreScheme into three
levels:

3 REFINING THE PRESCHEME SEMANTICS 5

1. Full PreScheme. This includes the code in the VM, essentially un-
changed, including macro definitions. This dialect is unmanageable
because the language of macro definitions is full Scheme.

2. Macro-Free PreScheme (MFPS). This is obtained from Full Pre-
Scheme by expanding all macros.

3. Pure PreScheme (PPS). This is a tail-recursive, closure-free dialect
of PreScheme, obtained from MFPS by hoisting lambda-expressions
and beta-expansion. This dialect is semantically tractable and was
the focus of our compiler development efforts.

We continued our discussions with Richard Kelsey, John Ramsdell, and
Joshua Guttman to agree on the primitives and syntax of Pure PreScheme.
Here we list the primary conclusions of those discussions, along with some
of the implications of those decisions:

1. Pure PreScheme programs are tail-recursive. The original conception
of PreScheme allowed bounded non-tail recursion; however, we agreed
that the restriction to pure tail recursion was acceptable. This requires
some minor recoding of the VM, since there are some calls to the
garbage collector which are not tail recursive. However, since there
are no nested calls, this recoding should be easy.

2. Pure PreScheme programs are closure-free: that is, closures are never
created at run-time. All lambda-expressions can, at least in principle,
be hoisted to a top-level scope. John Ramsdell has written a translator
from MFPS to Pure PreScheme that performs this hoisting.

The global structure of a PPS program consists of some global vari-
ables (including mutable globals, lexically distinguishable by names
of the form *namex), followed by a large letrec containing all the
mutually recursive procedures.

In particular, this means that the primitive goto has been dropped.
Both global procedures and those which are given by a local recursion
will be called as ordinary procedures. This distinction was an artifact
of the C implementation of PreScheme.

3. Local variables of procedures are not mutable.

3 REFINING THE PRESCHEME SEMANTICS 6

4. Procedures will no longer be storable. The semantic overhead of this
facility was considerable. It is used in only one place in the VM, to
build a dispatch table for the opcode interpreter. This dispatch table,
an array of procedures, was built once at VM initialization time, and
never modified. This will be replaced by a computed-goto expression
called choose. This also requires some recoding in the VM.

Eliminating procedures as storables considerably simplifies the seman-
tics of the heap, which will be approximately that of C. Heap primitives
perform something like malloc to create vectors, and vector indices
are pointers.

5. The following are the primitives of PreScheme:

not
unassigned
error

W+ %= hx %< h<= %= %>= %> %quotient %remainder %abs
hadjoin-bits %low-bits %high-bits

%bitwise-not %bitwise-and %bitwise-ior bitwise-xor
%ashl %ashr

%ascii->char Ychar->ascii

%char=? Y%char<?

huseful-bits-per-word

Jmake-vector Y%vector-ref vector-set! Jvector-length
hvector-posq %vector-fill!
Jmake-string %{\bf string-set}! jfor extract-string
hstring-length Ystring-ref

Jmake-byte-vector

hbyte-vector-fill!

hbyte-vector-ref hbyte-vector-set!
hbyte-vector-word-ref }byte-vector-word-set!

Jmake-byte-vector-pointer
hbyte-vector-pointer-ref
hbyte-vector-pointer-set!
hbyte-vector-pointer-word-ref

4 DEVELOPMENT OF THE PRESCHEME BYTE-CODE COMPILER7

hbyte-vector-pointer-word-set!

;5 170

hread-char Ywrite-char Ywrite-string
Jnewline

heof-object?

%hopen—-input-file %open-output-file
hclose-input-port Yclose-output-port
hcurrent-input-port %current-output-port
hforce-output

;; Used only by READ-IMAGE and WRITE-IMAGE
Jhwrite-number Yread-number

hwrite-page Y%read-page

hwurite-byte Y%read-byte %bits-per-io-byte
hcall-with-output-file Ycall-with-input-file ;ditto

These will be treated as keywords, so they will not be shadowable by
lambda-bindings. The Pure PreScheme compiler will not necessarily
deal with all these primitives, but will implement a subset large enough
to handle the VM as recoded by the MITRE group.

The following were treated as PreScheme primitives in the original
version of the VM, but were removed as primitives in light of our
discussions:

goto computed-goto label run-machine halt-machine
make-dispatch-table define-dispatch! dispatch

The grammar and semantics for PPS programs is shown in Section 8.
The semantics was developed by retrofitting the SPS Scheme semantics to
the restrictions listed above.

4 Development of the PreScheme Byte-Code Com-
piler

The next stage was the development of a translator from Pure PreScheme
to a combinator-based (byte-code) abstract assembly language. Byte code

4 DEVELOPMENT OF THE PRESCHEME BYTE-CODE COMPILERS

appeared to be a suitable target language for this compiler because the
quantities manipulated by the byte code abstract machine were sufficiently
close to ordinary machine quantities that the translation from byte code
to machine code would be straightforward. This is in contrast with the
situation for full Scheme, in which the representation of these quantities
was one of the major difficulties.

The compiler was developed using the Wand-Clinger compiler devel-
opment methodology [2, 8, 9, 10]. In this methodology, the denotational
semantics of the source language is taken as a concrete semantics: a transla-
tion into some lambda-calculus. This translation is then modified to produce
terms in a combinatory calculus. The operational semantics of the lambda-
calculus, given by reduction, then yields an operational semantics for the
target language.

This approach is made feasible by the observation that for suitable
choices of combinators, the reduction sequences mimic precisely the behav-
ior of ordinary machines. In the original papers [8, 9, 10], the correctness
of the compiler was just equality between the combinator semantics and
the original semantics. Clinger [2] showed how to produce a specification
relating the combinator semantics and the original semantics in which the
combinator terms clearly resembled ordinary byte codes; this avoided the
linearization or distribution step in the original version.

The development of the Pure PreScheme Byte-Code Compiler had three
main steps:

1. Development of the induction hypotheses. An induction hypothesis
was developed for each non-terminal in the Pure PreScheme gram-
mar. These were obtained by retrofitting the hypotheses in [2] to
the restrictions of the Pure PreScheme architecture. In particular, we
needed to eliminate the run-time recursion stack and to distinguish
non-terminals that are executed for effect only. In our implementa-
tion, a small stack is still used for handling local variables, but this
could be replaced by a register file.

2. Derivation of the byte codes. In this development method, the induc-
tion hypotheses serve as the specification for the compiler. One can
then substitute the semantic equations for each production and essen-
tially solve the equations to derive the behavior of the needed opcodes.
This notion of derivation is not shown in this report, but the results
are presented in the opcode definitions of Section 9.4.

5 DEVELOPMENT OF THE ASSEMBLER 9

3. Implementation of the translator proper. This was a straightforward
programming exercise in Scheme.

We also implemented an interpreter for the byte-code language, using
the definitions of the byte codes as Scheme definitions. Thus the interpreter
came essentially for free from the theory.

5 Development of the Assembler
In order to make this compiler a usable tool, two more items were needed:

1. A hoister-expander to translate from MFPS to PPS. This task was
accomplished by John Ramsdell.

2. A translator from byte code to real assembly language.

We implemented the byte code machine by designing a fairly straight-
forward representation scheme for the quantities in the byte code machine,
and writing a translator that emitted MC68020 code to simulate its action.
Because the quantities in Pure PreScheme, and therefore in the byte codes,
were relatively simple, this was easy.

We used a tagged architecture to aid with debugging and because the
PreScheme semantics might demand it. [The semantics does not completely
specify the behavior of a program in the presence of a run-time type error.
In most cases, run-time type errors invoke the continuation wrong, which is
not specified in the semantics. If wrong is interpreted to return a don’t-care
value, then any behavior is acceptable, and a tagged architecture is unnec-
essary. If the value of wrong is deemed significant, then the implementation
must test for run-time type errors. We chose to be conservative and take
the latter interpretation.]

Another part of the translator was the implementation of the primitives.
We chose to implement the following primitives, which were representative
of the entire list:

habort %hzero? Y= %> %< h<= Y+ N Uk
Y%make-vector %vector-ref vector-set!

6 CONCLUSIONS AND FURTHER WORK 10

For each primitive, it was necessary to emit assembly code that performed
the operation.

The major complication was representing global procedures, which are
the only closures in the system. This is discussed in Section 11.

6 Conclusions and Further Work

We have specified the semantics of Pure PreScheme and proved the correct-
ness of a compiler from Pure PreScheme to a byte code. The correctness
proof consists of a straightforward structural induction whose individual
steps are accomplished in the lambda-calculus. The complete proof is given
in this report. The byte-code to assembly-language translation is viewed
as straightforward and self-evidently correct, though such a judgement is of
course subject to debate.

As of this writing, the compiler is being tested using on a small virtual
machine definition for the pure lambda-calculus. Once that is completed,
work can progress on using it to compile the Scheme48 VM.

We currently envision extensions of this work in at least four directions,
each of which will serve the overall goal of increasing the reliability and
trustworthiness of compilers:

1. Machine support for checking or generating proofs of the form dis-
played here. We are working on this at the present time [1]

2. Formalizing the semantics of the target machine and the correctness of
the representation strategies used to implement the byte-code machine.
This was a major problem for the VM correctness proof. Some work is
underway on this elsewhere [3], but we believe that our methods may
lead to significant advances on this problem.

3. Extending the Wand-Clinger methodology to compilers that perform
significant optimizations. Some first steps toward this are reported in
[5] and [12].

4. Compiling Scheme by translating Scheme programs to Pure PreScheme
programs.

7 LANGUAGE OVERVIEW 11

7 Language Overview

This section begins the technical portion of this document. It begins with
an overview of the Pure PreScheme language. Section 8 gives the syntax
and denotational semantics of the language. Section 9 presents the compiler,
and Section 10 presents the correctness proof. Last, Section 11 describes the
assembler from byte codes to assembly language.

Pure PreScheme is a descendent of the language PreScheme, invented
by Jonathan Rees and Richard Kelsey for the Scheme48 compiler. A Pure
PreScheme program consists of an initial declaration of global variables, top
level procedure declarations, and a body. All global variables are enclosed
within asterisks (e.g. *globalx*) and are the only variables which can be
affected imperatively. The syntax of PurePreScheme has been designed so
that all procedures and the main body are tail-recursive. Nested procedure
calls can occur in ‘simple’ expressions where it can be assured that no recur-
sion will occur, that is, wherever it would be safe to expand the procedure
call in-line. Procedures can be passed upwards and downwards but can-
not be cannot be created dynamically. Other expressed values available in
PurePreScheme are integers, characters, booleans, and byte pointers.

8 The Semantics

The specification of PurePreScheme is a straightforward exercise in denota-
tional semantics.

The only unusual aspect has to do with the environments. Specifically,
they can contain either pointers into the store for globals or expressible val-
ues for locals; this must be taken into account. We use the notation p[—/—]
for the simultaneous extension of an environment by a list of bindings; the
usual one-point environment update is therefore written as p[(d)/(I)]. The
behavior of extension when the list of identifiers contains duplicates is un-
specified. We also need a notion of sequential environment extension. This
notion and notation are defined by the following axioms:

PO/ O =p
pl(0::6%) /(T = T9)]* = (p[(0)/(T)])[6"/T*]*

8 THE SEMANTICS 12

Here () denotes an empty sequence and (« :: @*) denotes adding « to a
sequence of o's, o*. Similarly, (af : @f) denotes the concatenation of two
sequences of o's.

8.1 Syntax

The input to the language is assumed to be a list structure; therefore the
lexical structure of the language is unspecified, except that global identifiers
are Scheme symbols distinguished by being surrounded by asterisks (e.g.
xglobal-variable). The nonterminals of the language are as follows:

L € LocIde local identifiers
G € GloIde global identifiers
I € Ide local & global identifiers
K € Con constants
P € Prim primitives
LSD € LocSimDec local simple declarations
GSD € GloSimDec global simple declarations
LPD € LocProcDec local procedure declarations
S € Simple simple expressions & commands
T € Tre tail-recursive expressions
E € Pgm programs
The starting symbol is Pgm.
The productions are:
LSD == (L S)*
GSD == (G S)*
LPD ::= (L (lambda (L*) T))*
S == K
L
G

(if Sp S1 S9)
(choose S (S%))
(set! G 8)

8 THE SEMANTICS 13

| (P %)
T = S
(if S Ty Ty)

|

| (begin S* T)

| (let (LSD) T)
| (let* (LSD) T)
| (s 8%

E = (let* (GSD) (letrec (LPD) T))

8.2 Value Domains

a€ L locations/denoted values
ve N small integers
T = {false, true} truth values
H characters
pe F=E*—C procedures
B€EB byte pointers
veE P=E"—>K-—>C primitives
weO=U—F openers
x € X error messages
e€c E=N+T+H+F+ B expressed/stored values
ceS=L—E stores
0e D=L+ FE denoted values
p€ U=1de = D environments
be C=S—A command continuations
kE K=FE—C expression continuations
A answers

These domains are all standard, except for the domain of openers; these
are procedures (closures) that are waiting to receive the environment in
which they will be closed.

A distinguishing characteristic of these domains is that all the expressed
values can naturally fit in one machine word, except for procedures, which
must be represented by pointers. Note also that procedures do not take
continuations, since they are tail-recursive.

8 THE SEMANTICS 14

8.3 Semantic Functions

The semantic functions include three auxiliary functions for analyzing dec-
larations, and one main valuation for each syntactic category. Note that T
does not take a continuation argument, since these are tail-recursive expres-
sions, which do not use a run-time stack.

gL : LocSimDec — LocIde*

gp : LocProcDec — LocIde*

gg : GloSimDec — GloIde*

K: Con — F

P Prim — P

DL : LocSimDec - U — (E* - C) —» C

SDL: LocSimDec - U — (E* = C) = C
SDG: GloSimDec - U — (L* - C) = C
RP: LocProcDec — Loclde* — U — E* — E*
RDP : LocProcDec - U — (E* - C) = C
S¢€ Simple - U - K - C

S&*: Simple* - U — (E*—=C) = C
SEC*: Simple* = N—->U—->K —C

SC: Simple - U - C —= C

SC* . Simple* - U — C —> C

SCC*: Simple* = N —-U—->C—=C

T Tre - U —» C

E: Pgm — U — C

8.3.1 Auxiliary Valuations
These valuations extract sequences of identifiers from various declarations.
GL : LocSimDec — LocIde*

Get Locals. Extracts local identifiers from local simple declarations.
gLl1=1()

GL[(L S) LSD] = (L :: GL[LSD])

8 THE SEMANTICS 15

GP : LocProcDec — LocIde*

Get Procedures. Extracts procedure identifiers from local procedure
declarations.

GP[]=()

GP[(L (lambda (L*) T)) LPD] = (L :: GP[LPD])

GG : GloSimDec — GloIde*
Get Globals. Extracts global identifiers from global simple declarations.
gal1=1()

GG[(G s) GSD] = (G :: GG[GSD])

8.3.2 Main Valuations

K: Con— FE
Constants.

[definition deliberately omitted]

P: Prim— P
Primitives.

[definition deliberately omitted]

DL : LocSimDec - U — (E* —» C) = C

8 THE SEMANTICS 16

Declare Locals. Takes a sequence of local simple declarations and returns
a corresponding sequence of values of the simple expressions.

DL[T =Mt ()

DL[(L S) LSD] = Apyp . DLILSD]p(Ae* . SE[S]p(Ae . ¢ (€ :: €¥)))

SDL : LocSimbDec - U — (E* —» C) = C

Sequentially Declare Locals. Takes a sequence of local simple declara-
tions and returns a corresponding sequence of values of the simple expres-
sions. The environment is updated as each simple expression is evaluated.

SDLLT = Ao ()

SDL[(L 8) LSD] = Apyp . SE[S]p(Ae . SDL[LSD]p[(e in D) /(L)]
(Ae* . 1) (e €Y)))

S8DG : GloSimDec —» U — (L* - C) = C
Sequentially Declare Globals. Takes a sequence of global simple declara-

tions and returns a corresponding sequence of locations in the store where
values of the simple expressions are located.

SDG[] = An-€()
SDG[(G S) GSD] = Apé . SE[S]p(Ae . (tieval (Aa . SDG[GSD]p[(« in D) /{G)]

(Aa* . € (i a)))
€)

RP : LocProcDec — Loclde* - U — E* — E*

8 THE SEMANTICS 17

Recursive Procedures. Takes a sequence of procedure declarations and
returns a corresponding sequence of recursive procedures (when used in con-
junction with RDP). More precisely, given a sequence of procedure decla-
rations, a list of local identifiers Lj (the names of the procedures in the
recursive declaration), an environment p (the environment on entrance to
the declaration), and a list of expressed values €j (the values of those pro-
cedures) , it returns a list of expressed values. Each expressed value is a
procedure, obtained by closing the corresponding lambda expression in the
environment obtained by extending p by binding the identifiers in Lj to the
corresponding values in €.

This is used in conjunction with RDP, which uses a fixpoint operator
to set up the appropriate fixpoint equation.

As noted above, the behavior of extension when the list of identifiers con-
tains duplicates is unspecified. Therefore the behavior of RP is unspecified
when either L or L contains duplicates.

RP[] = AL*pe . ()

RP[(L (lambda (L*) T)) LPD] =
ALjpes . ((Ae* . TIT](pl(map (in D)) /L))
[(map (in D) ¢f jy(Egverse L*)]
:: RP[LPD]L{peg)

RDP : LocProcDec U — (E* —» C) = C

Recursively Declare Procedures. Takes a sequence of procedure declara-
tions and returns a corresponding sequence recursive procedures. (GP[LPD]
calculates the list of procedure names declared in LPD, corresponding to the
argument Lj in the definition of RP. p is the environment enclosing the dec-
laration, as in RP. Thus the argument to the fixpoint operator corresponds
to Ae®; the value of the fixpoint is a sequence of expressed values, which
are passed to the continuation.

RDPILPD] = Aptp . (£ix (RP[LPD](GP]LPD])p))

SE: Simple - U —- K — C

8 THE SEMANTICS 18

Simple Expressions. Evaluates the expression and passes the value to
the expression continuation.

SE[K] = Apk . k(K[K])

SE[L] = Apr . (pL) E E — w((pL) | E),
(wrong “Local variable given storage.”)

SE[G] = Apk . (pG) E L — (hold ((pG) | L) k),
(wrong “Global variable not given storage.”)

SE[(if Sp S1 S2)] = Mok . SE[So]p(Xe. (e | T) = false — SE[Sa]pk,
SE[S1]pr)

S&[(choose S (58%))] = Apk . SE[S]p(Ae.e EN — SEC*[S*](e | N)p~r

(wrong “Non-numeric argument.”))
SE[(set! G 8)] = Apr . SE[S]p(Xe. (pG) E L —(assign ((pG) | L) € (k €)),
(wrong

“Can’t assign to a local variable.”))

SE[(P 8*)] = Apk . SE*[S*]p(Ae* . apply-primitive P[P] €* k)

S&*: Simple* - U — (E* - C) = C

Simple Expression sequences. Evaluates the sequence of simple expres-
sions and passes the sequence of values to the continuation.

SE] =4 ()

SEX[S 8*] = Apyp . SE[S]p(Ae . SE*[S*]p(Ae* . (€* : (€))))

SEC* . Simple* - N U - K = C

Simple Expression Choose sequences. Returns the value of the simple ex-
pression in the sequence of simple expressions corresponding to the numeric
choice, v. If there is no corresponding choice an error is signaled.

8 THE SEMANTICS 19

SEC*[]| = Avpk . wrong “Choose: index out of bounds.”

SECH[S 8*] = Avpk .v =0 — SE[S]pr, SECH[S*](v — 1)pk

SC: Simple - U - C — C

Simple Commands. Evaluates the expression and but ignores the return
value.

SCIK] = A\pb . 0
SCIL] = A\pf . 0
SCIG] = A\p . 0

SC[(if So S1 S2)] = Apb . SE[So]p(Xe. (e | T) = false — SC[S2]pb,
SC[s1]p0)

SC[(choose S (8"))] = Apb . SE[S]p
(Ae.e EN — SCC*[S*](e | N)pb,

(wrong “Non-numeric argument.”))
SC[(set! G S)] = Apb . SE[S]p(Ae. (pG) E L —(assign ((pG) | L) €6),

(wrong
“Can’t assign to a local variable.”))

SC[(P 8*)] = Ao . SE*[S*] p(Ae* . apply-primitive/ignore P[P] €*)

SC*: Simple* - U —-C = C

Simple Command sequences. Evaluates the sequence of simple expres-
sions ignoring the values.

SC[]=Mpb.0

8 THE SEMANTICS 20
SC*[S S*] = Al . SC[S]p(SC*[S*]p0)

SCC*: Simple* = N U —>C —=C

Simple Command Choose sequences. Evaluates of the simple expression
in the sequence of simple expressions corresponding to the numeric choice,
v, ignoring the value. If there is no corresponding choice an error is signaled.

SCC*[] = Avpb . wrong “Choose: index out of bounds.”

SCC*[8 S*] = Avpk . v =0 — SC[S]pf, SCC*[S*](v — 1)pb

Tail-recursive expressions. Evaluates the tail-recursive expression and
returns the value. As the expressions are tail-recursive, no continuation is
necessary. kg is the initial continuation for the program. This is unspecified.

T: Tre—>U—C
TTS] = Mp. SE[S]pro
TIEE S To TD] = Mp. SE[S]p(Ne . (¢ | T) = false — T[T1]p, T[Tolp)
Tl(begin 8* T)] = Ap. SC[S*]p(T[Tlp)

T[(1et (LSD) T)] = \p. DLILSD]p(Ae* . T[T]p[(map (in D) ¢*)/GLILSD]])
(

Tl(letx (LSD) T)] = Ap.SDL]LSD]p
(Ae” . T[T]p[(map (in D) €*)/GLILSD]]")

TI(S 8*)] = Ap.SE[S*]|p(Ae* . SE[S] p(Ae . (tail-apply € €*)))

E:Pgm—U—=C

Expressions. Sequentially declares any globals, then recursively defines
any procedures in the updated environment, and finally evaluates the tail
recursive body in the resulting environment.

E[(let* (GSD) (letrec (LPD) T))] =
Ap . SDG[GSD]p
(Aa* . RDP[LPD]p[(map (in D) «*)/GG[GSD]]*
(Ae” . TT](p[(map (in D) a*)/GG[GSD]]*)
[(map (in D) €*) /GPLPD]]))

8 THE SEMANTICS

8.4 Auxiliary Functions
wrong : X — C

[definition deliberately omitted]

new: S — L

[definition deliberately omitted]

hold: L — K —C

hold = Mak . Ao . k(o a)o

update : L - FE — S — S

update = daeo . Aag . ag = & — €, 0Qg

assign : L - FE - C — C

assign = \ael . Ao . O(update a € o)

tieval : (L—C)— E —C

tieval = Ae . Ao . &(new o)(update (new o) € o)

apply-primitive : P — E* - K — C

apply-primitive = \ve*k . ve*k

apply-primitive/ignore : P — E* — C — C

apply-primitive/ignore = Ave*d . ve* (e . 0)

tail-apply : F — E* — C

tail-apply = Xee* . e EF — (e | F)e*, (wrong “Non-function to apply”)

21

9 THE COMPILER 22

9 The Compiler

The compiler for PurePreScheme produces code for an abstract machine
consisting of a runtime environment, u, and stack, {. The stack is used
only for the storage of temporaries within an expression, and is not used for
control purposes. A byte-code program is a term 7 of type Q = U, —» E* —
C. Hence a typical machine configuration is a term of the form wu(.

Though the machine is defined denotationally, machine configurations
are given an operational semantics by inheritance from the operational se-
mantics (that is, the reduction behavior) of the lambda-calculus. The byte-
code terms are carefully defined so that if 7 is a legal bytecode program,
then mu(reduces to a term 7'4/¢’ in some small number of reduction steps.
Furthermore, since all these terms are in continuation-passing style, there
is essentially only one such reduction that is possible. Therefore we can
interpret this reduction sequence as a step in the operational semantics of
the machine: wu¢ = «'u’¢’. This notion of operational semantics is famil-
iar to any Scheme programmer and in fact goes back at least 30 years to
McCarthy, who first recognized the relation between tail-recursive program
schemes and ordinary iteration [4].

For tail-recursive expressions, the compiler takes a symbol table v and
produces code. In the case of non tail-recursive constructs, the compiler
takes not only v but also a code continuation m, consisting of the code to
follow the code generated.

We assume the existence of functions for extending run-time and compile-
time environments. A runtime environment g and a symbol table 7 form
a representation (distributed across different times!) of an environment
(o). We need to ensure that the run-time and compile-time extension
functions behave consistently. The behavior of these functions must satisfy
the following for any p and ~:

((po))[(map (in D) €*)/L*] = ((extends, | p €*) o (extendsq; v L*))

(112 7)) [(map (in D) €)/L]" = ((eatends;) o (estends; 7L7))

(1 oy))[(map (in D) &*)/G*]* = ((extends; , p ™) o (extends, , v G*))
The standard implementation of lexical addresses satisfies these axioms.

In addition, the procedures top, take-first, and pop-first are used to ma-
nipulate the runtime stack. These are assumed to satisfy the following:

(top (¢ :) = ¢

9 THE COMPILER 23

(take-first0¢) = ()
(take-first (n 4+ 1+ (e :: () = (e :: (take-firstn ())
(pop-first 0¢) = ¢
(pop-first (n + 1) (e :: ¢)) = (pop-firstn ()

The compiler itself is presented in terms of its semantics. Thus we write:

CSDL[]=Mym.7

CSDL[(L S) LSD] = Ayw . CSE[S]y
(add-to-env*

(CSDL[LSD](extendsy; v (L))m))

However, as we did for the semantics, we envision this as a concrete
semantics, yielding combinator terms of type @) rather than values in Q.
For this translation, we assume that all arguments to compiler procedures
(in this case, the syntactic argument, v, and 7) are compile-time values, and
all results of compiler procedures (always of type ()) are run-time values,
that is, at compile-time they appear as terms of type). Thus, using the
back-quote convention of Lisp, we might translate the fragment above into
code like the following:

(define csdl
(lambda (locsimdec gamma pi)
(record-case locsimdec
(empty-locsimdec () pi)
(composite-locsimdec (1 s 1sd)
(cse s gamma
(add-to-env*
(csdl 1sd (extends*-cl gamma (list 1)) pi)))))))

This code might be pure semantics, but we can specify a pass separation
by revealing the definition of add-to-env* as:

(define add-to-env*
(lambda (q)
‘ (add-to-env* ,q)))

9 THE COMPILER 24

or equivalently

(define add-to-env*
(lambda (q)
(1ist ’add-to-env* q)))

This specifies that the output of this program is a term: a byte-code
program. We obtain a compiler by assuming that each of the procedures
listed as a machine instruction below is implemented by such a back-quote
procedure. The semantics of the resulting byte-code program is given by
replacing each byte-code symbol by its semantics.

9.1 Compiler Syntactic Domains

The syntactic domains for the compiler are the same as those for the seman-
tics.

9.2 Compiler Value Domains

a€ L locations/denoted values
ve N small integers

T = {false, true} truth values

H characters
pe F=FE"—=C procedures
b€ B byte pointers
veE P=E"—>K-—>C primitives
weO=U—F openers

x € X

ee E=N+T+H+F+B
ce S=L—FE

0€e D=L+ FE

L€ D,

v € U,=1de — D,
we U =D.—D

p€ U=1de - D

fe C=5S—A

ke K=FE—C

e @Q=U,— FE*—C

error messages
expressed /stored values
stores

denoted values

lexical values

compiler environments
runtime environments
environments

command continuations
expression continuations
byte code

9 THE COMPILER 25

A

answers

These are all the same as in the semantics, except for the new domains
of compiler environments (symbol tables), runtime environments (displays),

lexical values (or lexical addresses)

9.3 Compiler Semantic Functions

gL : LocSimDec — LocIde*
gpP : LocProcDec — LocIde*
gg : GloSimDec — GloIde*
K: Con — F

P Prim — P

CDL: LocSimDec —»U,— Q — @
CSDL: LocSimbec - U, —» Q — Q
CSDG : GloSimDec —» U, — Q — @
CRP LocProcDec — LocIde* — O
CRDP : LocProcDec - U, > Q — @
CSE: Simple—-U,.—Q — Q
CS&*: Simple* - U.—Q — @
CSEC* : Simple* - U, > Q — Q
CSC: Simple -U.—Q —Q
CSC*: Simple* -U.—Q — Q
CSCC*: Simple* - U, — Q — @
CT: Tre > U, — Q

CE: Pgm — U, = @

9.3.1 Auxiliary Valuations

GL : LocSimDec — LocIde*

[definition same as for semantics]

GP : LocProcDec — LocIde*

9 THE COMPILER 26

[definition same as for semantics]

GG : GloSimDec — GloIde*

[definition same as for semantics]

9.3.2 Main Valuations

K: Con— F

[definition same as for semantics]

P: Prim— P

[definition same as for semantics]

CDL : LocSimbec - U, — Q — Q

Compile Declare Locals. Takes a sequence of local simple declarations
and generates code which pushes onto the runtime stack the corresponding
sequence of values of the simple expressions.

CDL[]=Mym.7

CDL(L S) LSD] = Ayr . CDL[LSD]y(CSE[S]yr)

CSDL : LocSimDec - U, — @ — @

Compile Sequentially Declare Locals. Takes a sequence of local simple
declarations and generates code which pushes onto the runtime stack the
corresponding sequence of values of the simple expressions. The environment
is updated as each simple expression is evaluated.

9 THE COMPILER 27

CSDL[]=Mm.7

CSDL[(L S) LSD] = Ayw . CSE[S]y
(add-to-env*

(CSDL[LSD](extendsy, v (L))m))

CSDG : GloSimbec —» U, — Q — @

Compile Sequentially Declare Globals. Takes a sequence of global sim-
ple declarations and generates code which pushes onto the runtime stack a
corresponding sequence of locations in the store where values of the simple
expressions are located.

CSDG[]| =Myr.m
CSDG[(G S) GSD] = Ay . CSE[S]y

(add-global-to-env*
(CSDG[GSD](extends, , v (G)) 7))

CRP : LocProcDec — LocIde* — U, — O

Compile Recursive Procedures. Takes a sequence of procedure decla-
rations and generates code which pushes onto the runtime stack the cor-
responding sequence recursive procedures (when used in conjunction with

CRDP).
CRP[] = A\L*y . empty-openers
CRP[(L (lambda (L*) T)) LPD] =

ALGy - openers (#L*) (CT[T](extends.; (extends.; 7y (reverse L*)) L§))
(CRPILPD]L:)

CRDP : LocProcDec - U, = Q — Q

9 THE COMPILER 28

Compile Recursively Declare Procedures. Takes a sequence of proce-
dure declarations and generates code which pushes onto the runtime stack
a corresponding sequence recursive procedures.

CRDP[LPD] = M\yn.closerecs (CRP[LPD](GP[LPD])y)

CSE: Simple > U, — Q — @

Compile Simple Expressions. Generates code which evaluates the ex-
pression and pushes the value onto the runtime stack.

CSE[K] = My . constant (K[K]) 7
CSEL] = Ay . fetch-local (Y L) 7

CSE[G] = My . fetch-global (v @)

CSE[(if So S1 S2)] = Ay . CSESo]y(brf (CSE[S1]y) (CSE[Sa]y))
CSE[(choose S (S))] = Ayr . CSE[S]y(numeric? (CSCE*[S*]yr))
CSE[(set! G S)] = Ayr . CSE[S]y(update-store (v G))

CSE[(P S*)] = Aym . CSE*[S*]y(prim-apply #S* P[P])

CSE*: Simple* - U, — Q — Q

Compile Simple Expression sequences. Evaluates the sequence of simple
expressions and pushes the sequence of values onto the runtime stack.

CSE[]=Mnm.m

CSES S*] = Ayr . CSE[S]Y(CSE* [S*]yr)

9 THE COMPILER 29

CSEC* : Simple* — U, — Q — Q

Compile Simple Expression Choose sequences. Pushes the value of the
simple expression in the sequence of simple expressions corresponding to
the numeric choice, v, onto the runtime stack. If there is no corresponding
choice an error is signaled.

CSECH[| = My . out-of-bounds

CSECH[S 8*] = Mym . pick (CSE[S]yn) (CSEC*[S*]ym)

CSC: Simple - U, —> Q — Q

Compile Simple Commands. Evaluates the expression and but does not
push the value onto the runtime stack.

CSCIK] = Ay .
CSCIL] = Ay .

cSCle] = Aym . @

CSC[(if So S1 $2)] = Myrr. CSE[So]y(brf (CSCIS1]yr) (CSC[S2]v))
CSC[(choose S (5°))] = Ay . CSE[S]y(numeric? (CSCC*[S*]y))
CSC[(set! G §)] = My . CSE[S]y(update-store/ignore (y G) =)

CSC[(P 8*)] = Aym . CSE*[S*]v(prim-apply/ignore #S* P[P])

CSC*: Simple* - U, — Q — @

Compile Simple Command sequences. Evaluates the sequence of simple
expressions ignoring the values.

9 THE COMPILER 30

CSC*[]=Mm.7

CSC*[S §*] = My . CSC[S]Y(CSC*[$*]yr)

CSCC*: Simple* - U, —» Q — Q

Compile Simple Command Choose sequences. Evaluates of the simple
expression in the sequence of simple expressions corresponding to the nu-
meric choice, v, ignoring the value. If there is no corresponding choice an
error is signaled.

CSCC*[| = Aym . out-of-bounds

CSCC*[S S*] = My . pick (CSC[S]ym) (CSCC*[S*]ym)

CT: Tre > U.— Q

Compile Tail-recursive expressions. Generates code which evaluates the
tail-recursive expression and pushes the value onto the runtime stack. As
the expressions are tail-recursive, no code continuation is necessary for com-
pilation.
CT[S] = Ay .CSE[S]y(halt)
CTI(if S To T1)] = Ay .CSE[S)y(brf (CT[To]y) (CT[T1]7))
CT[(begin S* T)] = Ay .CSC[S*]v(CT[T]v)

CT[(let (LSD) T)] = M\y.CDL[LSD]y
(add-to-env (CT[T](extends.; v (GLILSD]))))

CT(1et* (LSD) T)] = Ay.CSDL[LSD]y(CT[T](extends;, v (GLILSD])))

CTI(S 8*)] = Ny .CSE*[S*]v(CSE[S](tail-call))

9 THE COMPILER 31

CE€: Pgm— U, = Q

Compile Expressions. Generates code which sequentially adds any glob-
als to the runtime environment, then generates code using a properly up-
dated symbol table which adds recursively defined procedures to the updated
runtime environment, and finally generates code in the further updated sym-
bol table which executes the tail recursive body in the resulting runtime
environment.

CE[(let* (GSD) (letrec (LPD) T))] =
Ay . CSDG[GSD]y(CRDPILPD](extends, , v GG[GSD])
(CT[T](extends.; (extends, , v GG[GSD]) GP[LPD])))

9.4 Machine Instructions

In this section, we specify the semantics of each machine instruction. As
noted above, a compiler is obtained instead if we replace each of these pro-
cedures by a procedure that emits the appropriate code.

constant : E— Q — @

constant = Xem . AuC . (wu(e :: ()

fetch-local : D, = Q — Q)

fetch-local = A . AuC . (i) E E —
mu(((pe) | B) :: Q)),

(wrong “Local variable given storage.”)

fetch-global : D, — @ — @

fetch-global = A . A\uC . () E L —

(hold ((n 1) | L) (Aempu(e =2 (),
(wrong “Global variable not given storage.”)

9 THE COMPILER 32

brf: Q—>Q —Q

brf = AmomiAuC . ((top Q) | T') = false — (miu(pop-first 1)), (mop(pop-first1())

numeric? : Q — Q

numeric? = Au(. (top () E N = (7€), (wrong “Non-numeric argument.”))

update-store : D, — Q — Q
update-store = A . ApuC . (ut) E L —

(assign (1) | L) (top) (muC)),
(wrong “Can’t assign to a local variable”)

prim-apply : N —- P = Q — Q

prim-apply = Avor . AuC . (apply-primitive v (take-firstv () (Ae . wu(e = (pop-firstv ())))

update-store/ignore : D, — Q — Q
update-store/ignore =

N MG - (1 0) B L = (assign (1 1) | I)(top ¢) (mpu(pop-first 1 0))),
(wrong “Can’t assign to a local variable”)

out-of-bounds : Q

out-of-bounds = Aul . wrong “Choose: index out of bounds.”

pick: Q> Q —Q

pick = Amomy . ApC . ((top¢) | N) =0 —
(mop(pop-first 1 C)),
(mip((((top ¢) | N = 1) | E) :: (pop-first 1 ()))

9 THE COMPILER 33

prim-apply/ignore : N - P — Q — Q

prim-apply/ignore = Avor . AuC . (apply-primitive v (take-first v) (Ae . mu(pop-first v C)))

halt : Q

halt = ¢ . Ko(top ¢)

add-to-env : Q — Q

add-to-env = Am . AuC . w(extends, | 1 ¢){)

add-to-env* : Q — Q

add-to-env* = A . Au(. w(extendsy; p {(top C)))(pop-first 1 ()

add-global-to-env™ : @Q — Q

add-global-to-env* =
AT g - tieval (A . w(extends; ; p (@) (pop-first 1 ()) (top ¢)

empty-openers : O

empty-openers = A . Ae* . ()

openers : N —@Q — O — O

openers =
Avrw . Ap. e . ((Ae* . m(extends, | (extends, ; pe*) €5)()) in E :: (wpe*))

tail-call : Q)

tail-call = AuC . (tail-apply (top) (pop-first 1 ())

closerecs : O — Q — Q

closerecs = dwm . AuC . m(extends, | p (fix (wp)))C

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 34

10 Correctness of the PurePreScheme Compiler

The main statement of the correctness proof is

(CE[PGM]y) () = ETPGM] (1 0)

This asserts that when the code CE[PGM]y produced by compiling PGM in
symbol table v is run on the machine, starting with run-time environment g
and empty stack, the result will be the same as that of applying the semantics
of £[PGM] of PGM to the environment (u o) obtained by composing p and
.

The proof is a tedious but straightforward structural induction. There
are a total of 13 simultaneous induction hypotheses, one for each function
in the compiler. FEach induction hypothesis specifies the behavior of one
compiler function relative to a suitable semantic valuation.

These specifications generally fall into two categories. The first flavor
relates semantic valuations which do not take expression continuations to
their corresponding compiler valuations. The main statement above falls
into this category. The corresponding compiler functions do not take a
continuation argument 7. Furthermore, these program phrases run only
when the run-time stack (is empty.

The second of induction hypothesis deals with semantic valuations which
do take expression continuations. In this case code is compiled using a
symbol table and the code to follow the given code, m. A typical induction
hypothesis in this category is

(CSEISTym)uC = SEISY1 0 ¥) e - mpale :: €)

This asserts that when the code CSE[S]ym, produced by compiling S in
symbol table v and code continuation 7, is run on the machine, starting with
run-time environment p and stack (, the result is the same as evaluating the
semantics of S with environment (4 o) and a continuation which places the
value € on the stack { and then runs the code continuation 7. Informally,
this is read as “the code for S puts its result on the stack and continues with

7r"7

When sequences are involved, the push operation :: is typically replaced
by an append operation : .

Induction Hypothesis 0

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 35

(CDL[LSD]ym)u¢ = DLILSD] (10 1) (Ae* . mu(e* :)

The induction hypothesis states that running local declarations compiled
using symbol table v with the code to follow 7 in runtime environment g
with runtime stack { is the same as the semantics using composition of

and v for an environment with a continuation which executes 7 in the same
runtime environment but with all the values pushed onto the runtime stack.

(CDL[Jym)u¢
= mpg

=DL[(o v)(Ae* . mu(e* : ()

(CDL](L $) LSD]ym)uc
= (CDLILSDIY(CSE[STym)g

= DLILSD] (10 7)(Ac* . (CSELSIym)u(e" : C))

= DLILSD] (1 0) (Ae* . SEIST (1 0 7)(Ae . mal(e 1) : 0)))

= DL[(L S) LSD](1x 0) (Ae* . wpu(e* : ¢))

Induction Hypothesis 1

(CSDL[LSD]ym)u() = SDLILSD] (i 0 v)(Ae* . w(extends) ; u €*)())

The induction hypothesis states that running local sequential declara-
tions compiled using symbol table v with the code to follow 7 in runtime
environment g with runtime stack (is the same as the semantics using com-
position of y and for an environment with a continuation which executes
7 in with the runtime environment extended with the values and the same
runtime stack.

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 36

(CSDL] Jym)u()

= mu()

=SDL[J(oy)(Ae* . m(extends); ue*)())

(CSDLI(L S) LSDJym) ()

= (CSE[S]y(add-to-env* (CSDLILSD](extends? ;v (L)) 7))l)

= SE[S] (10 7)(Ae . (add-to-env* (CSDLILSD] (extends?, y (L)) (e :: ()))
= SE[S] (10 7)(Ae . (add-to-env* (CSDLILSD] (extends?, v (L)m) (e :: ()))
= SE[S] (11 0) (Ae . (CSDLILSD](extends;, y (L)) (extends; 1 ()()

= SE[S] (o y)(Ae . SDL[LSD](o 7y)[e in D /L]
(Ae* . w(extendsy ; p (€ :: €9))()))

= SDL[LSD](u o v)(Ae* . m(extends, ; p€*)())

Induction Hypothesis 2
(CSDG[GSD]ym)u() = SDGGSD] (11 0) (Aa* . m(extendsy , ju o) ()

The induction hypothesis states that running global declarations com-
piled using symbol table v with code to follow 7 in runtime environment p
with an empty runtime stack is the same as the semantics using composi-
tion of p and « for an environment with a continuation which executes =
in with the runtime environment extended with the new locations and the
same empty runtime stack.

(€SDG[Tym)u()
= ()

= SDG[J(1 0) (Aa* . m(estendst , ju a*){))

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 37

(CSDG[(G 8) GSD]ym)u()

= (CSE[S]vy(add-global-to-env* (CSDG[GSD] (extends; , v (G)) 7)) ()

— SES] (o)
(Ae . (add-global-to-env* (CSDG[GSD] (extends, , v (G)) m))u(e 2 ()))

= SE[Sl(ne)
(Ae . tieval (Ao . (CSDG[GSD](extends; , v (G))) (extends; , p (a))()) €)

— SEls](uon)
(Xe . tieval (A . SDG[GSD] (i 0) [ev in D /G]
(Aa* . w(extends, , pu (a2 a*))())) €)

= SDG[(G 8)GSD](u o) (Aa* . m(extends, , pa*)())

Induction Hypothesis 3
(CRP[LPD]L*y)pue* = RP[LPD]L* (11 o 7)€
The induction hypothesis states that recursive procedure declarations

compiled using symbol table 4 running in runtime environment p with is
the same as the semantics using composition of i and for an environment.

(CRP[IL*y) e
= empty-openers u €
=()

= RP[JL* (1 o 7)¢

(CRP[(L (lambda (L*) T)) LPDJL}y)ue)

=(openers
(CTT](extendsq; (extends.; y (reverse L*)) Lg))

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 38

(CRPILPDILYY) e
=(((Ae* . (CT[T](extends.; (extends., ~y (reverse L*)) L{))
(extends,) (extends, | p €*) €5)()) in E)
it (CRP[LPD]Ly)pe*)

=(((Ae" . TITI((1 0)[(map (in D) €*)/reverse L*])[(map (in D) €5)/Lg]) in E)
:: RPJLPDJL§ (e 0 y)e*

= RP[(L (lambda (L*) T)) LPD]L}(o v)e"

Induction Hypothesis 4
(CRDP[LPD]ym)u() = RDP[LPD](p o v)(Ae* . w(extends, ; pe*)())

The induction hypothesis states that running recursive procedure dec-
larations compiled using symbol table v with code to follow 7 in runtime
environment g with runtime stack (is the same as the semantics using com-
position of p and vy for an environment with a continuation executing 7 in
with the runtime environment extended with the procedure and the same
runtime stack.

(CRDPLPD]ym)u()

= (closerecs (CRP[LPD](GP[LPD])y) m)u()

= m(extends, p (fix ((CRPILPD](GPILPD])y)u))){)
= m(extends, | u (fix (RP[LPD](GP[LPD]) (1 0v))))()

— RDPLPD] (11 0 v)(Ae" . w(eatends, e*)())

Induction Hypothesis 5

(CSEISTym)uC = SEISY1r 0 ¥)Ae . mpale : €)

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 39

The induction hypothesis states that running simple expressions com-
piled using symbol table v with code to follow 7 in runtime environment g
with runtime stack { is the same as the semantics using composition of p
and « for an environment with a continuation executing 7 in with the same
runtime environment but with the result pushed onto the runtime stack.

(CSE[K]ym)uC

= (constant (K[K]) m)uc

= SE[K] (o) (e . mu(e = ())

(CSE[L]ym) ¢
= (fetch-local (y L) 7)

= ((poy)L) EE =mu((((noy)L) [E) :: (),
(wrong “Local variable given storage.”)

= SE[L] (o y)(Ne. mu(e = ())

(CSEG]ym)u¢
= (fetch-global (v G)) uc

= ((no7)G) B L —(hold (((1°7)6) | L) (Aewp(e :: €))),
(wrong “Global variable not given storage.”)

= SE[G] (o) (e . mu(e :: ())

(CSE[(if So S1 S2)[ym)uC

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 40

— (CSE[Soly(brf (CSEIS Tyr) (CSEISTym)))i
— SESol (1o v) (e . (brf (CSES Tym) (CSESalym))pale :)

= SE[Sol(oy)(Ae. (e | T) = false —=((CSES2]ym)ul),
(CSE[S1]ym)uC))

= SE[So](poy)(Ae. (e | T) = false =SE[Sa] (1w o ¥)(Ae . wu(e :: 7))
SES: (1 07) e - mule =)

= SE[(if S S1 S)](woy)(Ne. mu(e :: ¢))

(CSE[(choose S (S*))]ym)uc
= (CSE[S]y(numeric? (CSCE*[S*]ym))uC)
= SE[S] (1 o) (Ae . (numeric? (CSCE*[S*]ym)) (e :: ())

=SE[S](noy)(Ae.e EN — (CSCE*[S*]ym) (e :: C),

(wrong “Non-numeric argument.”))

=SE[S](noy)(Ae.e EN — SCE*[S*](e | N) (o y)(Ae. mu(e :: C)),

(wrong “Non-numeric argument.”))
= S&[(choose S (S))](1 o) (e . mpule :: ¢))
(CSE[(set! G S)]ym)uc
= (CSE[S](update-store (y G) m))ug
= SE[8](n 0 7)(Ae . (update-store (y G) w)p(e ::)

= SE[SI(noy)(Ae. (po7)6) E L —=(assign (((noy)G) | L) € (mu(e ::))),
(wrong “Can’t assign to a local variable”))

=SE[(set! G S)](poy)(Ae.mu(e:: ()

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 41

(CSE(P 8*)[ym)uC
= (CSE*[8*]v(prim-apply #5* P[P] 7)) 1
= SE*[S*] (o) (Ne* . (prim-apply #S* P[P] m)u(e* : {))

= SE[S*] (1 0 v)(Ae* . apply-primitive P[P] (take-first #S* (€* : ())
(e . mple = (pop-first #5° (¢ - 0))))

= SE[S*](p o y)(Ae* . apply-primitive P[P] €* (Xe . mu(e :: ()))

= SE[(P)[(1o7)(Ne . mp(e :: Q)

Induction Hypothesis 6
(CSE s Tym)u¢ = SEIS 110 v) e* . e : €))

The induction hypothesis states that running simple expression sequences
compiled using symbol table v with code to follow 7 in runtime environment
i with runtime stack ¢ is the same as the semantics using composition of 4
and « for an environment with a continuation executing 7 in with the same

runtime environment but with the resulting values pushed onto the runtime
stack.

(CSE[[ym)uC
= mpg

= SE [J(roy) (N mu(e = ()

(CSE*[s 8*ym)u¢
= (CSE[SIy(CSE[8*]ym)) ¢

— SEISI(1 o 7) e . (CSE S Tymnle =)

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 42

= SE[S] (o v)(Ae . SEX[8* (o) (Ae™ . mu(e” : (e :: ())))

= SE*[S $* (o y)(Ae* . wu(e* : ()

Induction Hypothesis 7
(CSEC TS Tym)le = €) = SEC*TS*I(e | N) (10 7) (he . ma(e = €))

The induction hypothesis states that running simple expressions choose
sequences compiled using symbol table v with code to follow 7 in runtime
environment g with runtime stack ¢ is the same as the semantics using
composition of p and for an environment with a continuation executing =

in with the same runtime environment but with the result pushed onto the
runtime stack.

(CSECT Iym)ple =: C)
= (out-of-bounds)p(e :: ¢)
= wrong “Choose: index out of bounds.”

= SEC* [(e | N) (1o y)(Ne. mpu(e = €))

(CSEC[S S*]ym)pu(e :: €)
= (pick (CSE[S]ym) (CSEC*[8*]ym))pu(e == €)
= ((e| N) = 0) = (CSE[S]ym)ug, (CSEC*[S* [ym)u(((e | N = 1) | E) ()

= ((e| N) = 0) = SE[8] (1 0 7)(Ae . mpue :: (),
(csect s lym)u(((e | N =1) [E) :: ()

= ((e| N) =0) = SE[S] (1 o v)(Ae . wpu(e =2 C)),
SEC*[s*](e | N = 1) (o y)(Ae. mp(e :: ¢))

— SEC*[S $*1(e | N) (o v) (e . male i €))

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 43

Induction Hypothesis 8
(CSCISIym)u¢ = SCS] (1 0) (wuC)

The induction hypothesis states that running simple commands compiled
using symbol table v with code to follow 7 in runtime environment g with
runtime stack ¢ is the same as the semantics using composition of ;1 and « for

an environment with a continuation executing n in with the same runtime
environment and stack (i.e. the value is ignored).

(CSCIR]ym)pg
= mpg

— SCIKI (1 0 7) ()

(CSCIL]ym)u¢
= Tug

= SC[L](ps 0 7)(mpC)

(CSClG]ym)uC
= mpg

= SCG] (1 0 7) (7€)

(CSCI(if so S1 S]ym)ud
= (CSE[So]y(brf (CSC[S1]ym) (CSC[S2]vT)))1u¢
= SE[So] (1 o v)(Ae. (brf (CSCS1]ym) (CSC[S2]ym))ple :: C))

— SE[Sol(11 0 1) Ae . (euT) = false — ((CSCISaTym)uC), ((CSCIS Tym)uc))

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER

= SE[So] (10 v)(Ae . (euT) = false —SC[Sa] (1 0 v)(mul),
SC[S1](p 0 ¥) (7))

= SC[(if Sp S1 S2)] (ko) (muC)

(CSC[(choose S (S*))]ym)uC
= (CSC[8S]y(numeric? (CSCC*[S*]ym)) ul)
= SE[S] (1 o v)(Ae . (numeric? (CSCC*[S*]ym)) (e :: C))

=SE[SJ(poy)(Ae.e EN — (CSCCH[S*]ym)u(e :: €),

(wrong “Non-numeric argument.”))

— SEISI(1oy) e . € BN = SCC5*(e | N) (1 0 7) (i),

(wrong “Non-numeric argument.”))
= SC[(choose S (§*))] (o0 7)(muC)

(CSC[(set! G S)]ym)uc

= (CSE[S]y(update-store ignore (v G) 7))l

= SE[S] (1 0 v)(Ae . (update-store (y G) m)pu(e =:)

= SE[S](nov)(Ae. ((no7)6) E L —(assign (((1o7)G) | L) € (mu()),

44

(wrong “Can’t assign to a local variable”))

= SE[(set! G 8)](noy)(mu()

(CSC[(P 8*)]vym)uC
= (CSE*[S*]y(prim-apply/ ignore #S* P[P] m))ul

— SE°[S* (10 7)€" . (prim-apply/ignore #5* P[P] m)u(e* : ¢))

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 45

= SE[S*] (i o v)(Ae* . apply-primitive/ignore P[P] (take-first #S* (¢* : {))
(m(pop-first #8* (¢* : ())))

= SE*[S*](u o v)(Ne* . apply-primitive/ignore P[P] €* (mu())

= SC[(P 8™)] (1 © y)(mpC)

Induction Hypothesis 9

(CSCH[s*Tym)u¢ = SC*[S*] (1 o ¥) (mpuC)

The induction hypothesis states that running simple command sequences
compiled using symbol table v with code to follow 7 in runtime environment
u with runtime stack ¢ is the same as the semantics using composition of

and « for an environment with a continuation executing 7 in with the same
runtime environment and stack (i.e. the value is ignored).

(CSC*[Jym)u
= mpg

= SC[(o) (mpc)

(CSC*s 8*]ym)ud

= (CSCIS[v(CSC[8*Tym))ug

= SC[S] (1 0 v)((CSC*[8*]ym) ()

= SC[S] (1 o V)(SC*[8*] (1 0) (1))

= SC*[8 8*] (ko) (mu)

Induction Hypothesis 10

(eSCe[s Tym)ute = ¢) = SCCIS*1(e | N)(p 0) (wuc)

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 46

The induction hypothesis states that running simple command choose
sequences compiled using symbol table v with code to follow 7 in runtime
environment g with runtime stack ¢ is the same as the semantics using
composition of p and for an environment with a continuation executing =
in with the same runtime environment and stack (i.e. the value is ignored).

(esee*] Tymule = ¢)
= (out-of-bounds) (e :: ¢)
= wrong “Choose: index out of bounds.”

= SCC*[(e | N)(p o) (mug)

(€scer[s s*Jym)ule == Q)

= (pick (CSC[S]ym) (CSCC*[8*]ym))u(e :: C)

= (e | N) =0 = (CSC[8]ym)uC, (CSCC* S]ym)u(((e | N = 1) | E) :: ()

= (e[| N) =0 = SC[8](1x 0 7)(wu(), (CSCC[$*Tym)u(((e | N = 1) | E) :: ()
= (e | N) =0 — SC[S[(1 © 7)(wpuC), SCC*[8*](e | N — 1) (0) (mps()

= SCC*[s s*](e | N)(p o) (muq)

Induction Hypothesis 11
CTITIVu() = TIT] (e)

The induction hypothesis states that running tail recursive expressions
compiled using symbol table 7 in runtime environment p with an empty
runtime stack is the same as the semantics using composition of p and «y for
an environment.

(CTIsIv)u()

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 47

~ (cseTsThalt))ul)
_ SE[S)(n o 7) e - (haltule = ()
= SE[S] (o) (Ae . Kge)

= TIsl(non)

(CTIGEE 8 To TO]y)u()

= (CSE[STy(brf (CTTo]y) (CTIT:])))n()

= SE[S] (1o v)(Ae . (brf (CTTo]) (CTIT]))nle == ()

= SE[SI(noy)(Ae. (e | T) = false — ((CTTT1]y)u(). (CTITo]v)()))
= SE[S)(nov)(Ae. (e | T) = false — T[T1](0 v), T[To] (1o 7))

=T[(f s To To)](o)

(CT(begin 8* T)])u()

= (CSCIS™ Ty (CTITIM)K()

= SC[s*] (o M) ((CTITIv)1s())
= SC[s*](u o) (TT] (o))

= T[(begin S* T)](poy)

(CT[(1et (LSD) T)]vy)u()

= (CDL[LSD]y(add-to-env (CT[T](extends.; v (GL[LSD])))))u()

10 CORRECTNESS OF THE PUREPRESCHEME COMPILER 48

= DLILSD] (s o y)(Ae* . (add-to-env (CT[T](extends.; v (GLILSD]))))u(e* : ()))
= DL[LSD](p o v)(Ae* . (CT[T](extends.; v (GL[LSD])))(extends, ; u €*)())
— DL[LSD] (1 0 1) (Ae” - T4 0 7)[(map (in D) ¢*)/GLLSD]))

= T[(let (LSD) T)](no)

(CT[(1et* (LSD) T)]vy)u()

= (CSDLILSD]y(CT[T](extends,, v (GLILSD]))))u()

= SDL[LSD] (1 o) (A" . (CT[T](extends, v (GLILSD])))(extendsy; u €*)())
= SDLILSD] (0 y)(Ae" . T[T[(1 0 ¥)[(map (in D) €*) /G LILSD]]")

= T[(1et* (LSD) T)](uo)

(CTI(s 89)]v)u()

= (CSE [Iy (CSES]y(tail-call))) ()

= SE[8* (o) (Ae* . (CSE[S]y(tail-call)) (™ : ()

= SE[8* (o y)(Ae” . SE[S] (1 0 v) (A" . (tail-call)u(e :: (€ : ()))))
= SE[8* (o y)(Ae” . SE[S] (1w 0 ¥)(A€" . tail-apply € €))

=TI 8")](ko)

Induction Hypothesis 12

(CE[PaM]y)p() = E[PGM] (1 0)

The induction hypothesis states that running a program compiled using
symbol table v in runtime environment p with an empty runtime stack is
the same as the semantics using composition of i and for an environment.

11 THE ASSEMBLER 49

(CEJ(Let* (GSD) (letrec (LPD) T))]y)u()

— (CSDG[GSD]y
(CRDP[LPD](extends; , v GG[GSD])
(CTT)(extends.; (extends; , v GG[GSD]) GPLPD]))))u()

_ SDG[GSD] (s 0)
(Aa* . (CRDP[LPD](extends; , v GG[GSD])
(CTTT](extends.; (extends. , v GG[GSD]) GP[LPD])))(extends; , u a*)())

— SDG[asD] (1 0)
(Aa* . RDP[LPD] (i o v)[(map (in D) «*)/GG[GSD]]*)
(Ae* . (CT[T](extends.; (extends, , v GG[GSD]) GP[LPD]))
(extends, | (extends; , p a*) €°)()))

— SDGESD] (1 o)
(Aa* . RDP[LPD] (i o v)[(map (in D) «*)/GG[GSD]]*)
(. TTT] (1 0 7){(map (in D) o) /GGTGSD]}* (map (in D) ¢*)/GPILPD]]))

= E[(1et* (GSD) (letrec (LPD) T))](uory)

11 The Assembler

A method for translating PurePreScheme bytecode into assembly language
for a 32 bit microprocessor is now described. This methodology has been
used to generate code for the Motorola MC68020 and is being used to gen-
erate code for the Motorola MC88100 risc chip.

11.1 Representation of the Abstract Machine

The abstract machine uses storage for global procedures and a small stack for
temporaries inside an expression. For simplicity, we have chosen to represent
these using a single small stack. Note that the size of this stack is linear in
the size of the input program, and therefore all stack references could have
been statically allocated. This is not the usual run-time recursion stack,
which may grow unboundedly depending on the input to the program.

The initial environment, containing the globals and procedure declara-

11 THE ASSEMBLER 50

tions, is pushed onto the stack at program startup and remains the same
throughout. The runtime environment environment, 7, is built on top of the
initial environment, and the runtime stack, ¢, is built on top of u. Three
global registers are used in this scheme. The first is a pointer to the initial
environment, the second is a pointer to top of the runtime environment g,
and the third is a pointer to the top of the runtime stack (. Some bytecodes
also use additional temporary registers for some intermediate values but no
assumptions are about the values in these registers.

11.2 The Initial Environment

11.2.1 Globals

Globals are just represented as tagged data which is pushed onto the stack
at program instantiation.

11.2.2 Procedures

Procedures are represented by a code pointer, an argument count, and an
offset from the initial environment of telling where the procedure represen-
tation exists on the stack. This offset is tagged and used as the runtime
representation of the procedure.

Tagged Offset
Argument Count

Code Pointer

11.3 Representation Of Data

For simplicity, all data is represented by 4 bytes. The current semantics of
PurePreScheme necessitates runtime type tags. Tags are kept in the lower
order bits:

Tag B =1 byte pointers

Tag N = 00 small integers

Tag T = 0010 truth values

Tag H = 0110 characters

Tag F = 1010 global procedures

ARl

11 THE ASSEMBLER o1

There are several advantages to this scheme. First, byte pointers only
need one bit for the tag field, allowing the other 31 bits for address space.
Second, numeric operations can be done with little or no tag coding/decoding.
Third, as all tag bits are in the low order bits, most operations on them can
be done quickly. The actual representation of data with these tags given by:

1. Representation B=B * 2 + 1

2. Representation N = N * 4

3. Representation T = true = 18, T = false = 2
4. Representation H = ascii(H) * 16 + 6

5. Representation F = (offset from top of initial env) * 16 + 10

11.4 Assembling Bytecode

Shown here is each bytecode and the corresponding translation into assem-
bly. For basic functions are necessary for this translation. The first, generate
labels, is assumed to generate labels in some sequential manner. The sec-
ond, emit-i, emits assembly instructions. Similarly, the third, emit-1, emits
labels, and finally, the assembler can make recursive calls to itself. Two aux-
iliary functions, assemble-proc-code and assemble-proc-rep, are also used for
assembling the top level procedures and placing their representation in the
initial environment.

The generic assembly language instructions used here are straightfor-
ward. The stack is assumed to grow in a negative fashion, i.e. the stack
pointer is decremented when something is pushed on the stack. The three
global registers for the initial environment, runtime environment, and local
stack are referred to as ug, p, and (respectively. Additional registers are
refered to as rg ... ry. Register values can be accessed directly by naming
the register, rg, or can be dereferenced as pointer using the @ operator,
rg@(4). Constant decimal values are prefixed by a # such as #18.

11.4.1 Assemble

assemble((constant € 7))

11 THE ASSEMBLER 52

;; Push value on the stack.
emit-i(push €,()
assemble(r)

assemble((fetch-local ¢ 7))
;; Find the local in the environment p
;; and push its value on the stack.
emit-i(move p@(1),rg)
emit-i(push rg,()
assemble()

assemble((fetch-global ¢ 7))
;; Find the global in the environment
;; and push its value on the stack.
emit-i(move p@(1),rg)
emit-i(push rg,()
assemble()

assemble((brf m¢ 7))
generate labels lg, 1;
emit-i(pop (,ro)
;; Test against false.
emit-i(cmp #18.r1)
emit-i(jeq lp)
;; Generate code for the true branch.
assemble(m)
emit-i(goto 1)
;; Label & generate code for the false branch.
emit-1(1p)
assemble(m)
emit-1(1;)

assemble((pick 7))
generate #7* + 1 labels - wlog assume 1, is first.

emit-i(pop (,ro)

11 THE ASSEMBLER 93

check-numeric(rg)

;; Pick a label to transfer program control.
emit-i(computed-goto rg,labels)

;; Label and generate code for Oth option.
emit-1(1,,)

assemble(7*.0)

emit-i(jmp lyz-)

;; Label and generate code the last option.
emit—1(1n+#7(*_1)

assemble(7*.(#7*-1))

emit—1(1n+#7(*)

assemble((update-store ¢ 7))
;; Get value and move to global in environment.
emit-i(move (Q(0),u@(1))
assemble()

assemble((prim-apply v v 7))
;; Generate code for primitive.
inline-primitive(v,v)
assemble(r)

assemble((update-store/ignore . 7))
;; Get value and move to global in environment,
;; pop off stack so value is not returned.
emit-i(pop (,ro)
emit-i(move ro,u@(1))
assemble()

assemble((prim-apply/ignore v v 7))
;; Generate code for primitive such that
;; value is not returned.
inline-primitive/ignore(v,v)

11 THE ASSEMBLER

assemble()

assemble((halt))
emit-i(jmp exit)

assemble((add-to-env 7))
;3 Add stuff in ¢ to p.
emit-i(move (,u)
assemble(r)

assemble((add-to-env* 7))
;; Add one item in ¢ to pu.
emit-i(sub #4,u)
assemble()

assemble((add-global-to-env* 7))
;; Add one item in ¢ to pu.
emit-i(sub #4,u)
assemble()

assemble((tail-call))
generate labels 1y & 1y
emit-i(move pg,r3)
emit-i(pop (,ro)
check-function(rg)
;; Get rid of type flag.
emit-i(shr #4,r)
;; Find function in init env.
emit-i(add ro,rs)
emit-i(move (,ry)
;1 Get # of args.
emit-i(move r3@(4),rg)
;; Check # of args.

54

11

THE ASSEMBLER

shl #2.1¢)

move [i,ry)

move (,r9)

sub ro,ry)

emit-i(cmp rq,rq)

error (tail-call-errorl)

emit-1(1p)

;; Reset initial env for call.

emit-i(move pig,u)

emit-i(move pg,()

emit-i(add ro,ry)

;; Get code address.

emit-i(move r3@(8),rs)

emit-i(sub rg,()

;; Copy args and go.

emit-1(1;)

emit-i(cmp #0,r)

emit-i(jeq r3@(0))

emit-i(move r,@(0),.@)

emit-i(sub #4,u)
(
(
(

emit-i
emit-1
emit-i
emit-1

o~~~ —~

emit-i(sub #4,ry)
emit-i(sub #4,r()
emit-i(jmp 1y)

assemble((closerecs w 7))
generate #w-1 labels - wlog assume 1,, is first.

;; jump over generated code for procs.
emit-i(jmp 1n+#w)

Generate code for procs.
assemble-proc-code(w 1, 1p440-1)
emit'l(anr#w)

emit-i(push 1,,()

;; Push procedure representations on stack.
assemble-proc-rep(w 1, L4 #,-1)

;; Set up initial environment.
emit-i(move (,ug)

emit-i(move (,u)

assemble(r)

95

REFERENCES o6

11.4.2 Assemble-proc-code

assemble-proc-code((empty-openers) 1, 1,,)
;; Do nothing.

assemble-proc-code((openers v w w) 1, 1)
;; Emit label for proc to be assembled.
emit-1(1,,)

;; Assemble proc.

assemble()

;; Assemble remaining procedures.
assemble-proc-code(w 1,41 1)

11.4.3 Assemble-proc-rep

assemble-proc-rep((empty-openers) 1, 1)
;3 Do nothing.

assemble-proc-rep((openers v 7 w) 1, 1,;)
;; Push code address.
emit-i(push 1,,()
;; Push arg count.
emit-i(push v,()
;; Push offset from top.
emit-i(push m-n,()
assemble-proc-rep(w 1,41 1Iy)

References

[1] Cieselski, B., and Wand, M. “Using Isabelle to Prove the Correctness
of a Compiler,” in preparation.

REFERENCES 57

2]

[3]

[4]

[10]

[11]

[12]

Clinger, W. “The Scheme 311 Compiler: An Exercise in Denotational
Semantics,” Conf. Rec. 1984 ACM Symposium on Lisp and Functional
Programming (August, 1984), 356-364.

Hannan, J. “Making Abstract Machines Less Abstract,” Proc. ACM
Symp. on Functional Programming, Languages, and Architecture
(1991), to appear.

McCarthy, J. “Towards a Mathematical Science of Computation,” In-
formation Processing 62 (Popplewell, ed.) Amsterdam:North Holland,
1962, 21-28.

Montneyohl, M., and Wand, M. “Incorporating Static Analysis in a
Semantics-Based Compiler,” Information and Computation 82 (1989)
151-184.

Oliva, Dino P., and Wand, M. “The Semantic Specification of Scheme
via SPS,” NU CCS Technical Report, to appear.

Rees, J., and Clinger, W., eds. “Revised®.99 Report on the Algorithmic
Language Scheme,” electronic manuscript on altdorf.ai.mit.edu.

Wand, M. “Semantics-Directed Machine Architecture” Conf. Rec. 9th
ACM Symp. on Principles of Prog. Lang. (1982), 234-241.

Wand, M. “Deriving Target Code as a Representation of Continuation
Semantics” ACM Trans. on Prog. Lang. and Systems 4, 3 (July, 1982)
496-517.

Wand, M. “Loops in Combinator-Based Compilers,” Info. and Control
57,2-3 (May/June, 1983), 148-164.

Wand, M. “A Semantic Prototyping System,” Proc. ACM SIGPLAN
84 Compiler Construction Conference (1984) 213-221.

Wand, M., and Wang, Z.-Y. “Conditional Lambda-Theories and the
Verification of Static Properties of Programs,” Proc. 5th IEEE Sympo-
sium on Logic in Computer Science (1990), 321-332

