
Pre-Scheme: A Scheme Dialect for

Systems Programming

Richard A. Kelsey

NEC Research Institute

kelsey@research.nj.nec.com

June 4, 1997

Abstract

Pre-Scheme is a statically typed dialect of Scheme

that gives the programmer the e�ciency and low-

level machine access of C while retaining many

of the desirable features of Scheme. The Pre-

Scheme compiler makes use of type inference, par-

tial evaluation and Scheme and Lisp compiler

technology to compile the problematic features

of Scheme, such as closures, into C code with-

out signi�cant run-time overhead. Use of such

features in Pre-Scheme programs is restricted to

those cases that can be compiled into e�cient

code. Type reconstruction is done using a mod-

i�ed Hindley/Milner algorithm that allows over-

loaded user-de�ned functions. All top-level forms

in Pre-Scheme programs are evaluated at compile

time, which gives the user additional control over

the compiler's partial evaluation of a program.

Pre-Scheme has been implemented and used to

write a byte-code interpeter and associated sup-

port code for a complete Scheme implementation.

1 Introduction

High-level programming languages, such as

Scheme [15], Haskell [6], and ML [11], don't work

well for writing programs that require maximum

c

1997 NEC Research Institute, Inc.

All rights reserved

performance or direct access to machine-level in-

structions and data structures. This is deliber-

ate in some circumstances, such as checking at

run-time that array references are in range, and

unavoidable in others, for example the run-time

overhead required for garbage collection. Pre-

Scheme is a statically typed dialect of Scheme that

avoids all such overhead while attempting to pre-

serve the features of Scheme as much as possible.

The most important Scheme feature that is pre-

served is Scheme's semantics. Pre-Scheme's se-

mantics are identical to Scheme's, with the caveat

that a Pre-Scheme program may run out of space,

because it lacks both a garbage collector and full

proper tail-recursion. A Pre-Scheme program will

produce the same answer when compiled as when

run in a Scheme implementation, if the compiled

program does not run out of space.

The programs for which Pre-Scheme is appro-

priate are usually written in a low-level language,

for example C or Pascal. Doing so gives the de-

sired access to the machine, but only by giving up

all of the advantages of using a higher-level lan-

guage. Pre-Scheme is an attempt to get the best

of both worlds by restricting Scheme to those pro-

grams that when compiled run with no more over-

head than equivalent programs written in low-

level languages. Obviously we want the minimum

necessary restrictions so as to preserve as much of

Scheme's expressiveness as possible. Pre-Scheme

1

provides the following features lacking in C:

� local proper tail recursion

� nontrivial syntactic extensions (macros)

� higher order procedures

� type-checked polymorphism

� interactive debugging

� a module system

� Scheme semantics

Local proper tail recursion is necessary, since

recursion is the only way to express iterative con-

structs in Scheme or Pre-Scheme. Pre-Scheme

inherits Scheme's macro facility. C has its own

macros, but they are textual as opposed to syn-

tactic, and are much less powerful and convenient

than Scheme macros. Proper tail recursion is im-

plemented so long as the compiler can translate

it into an iterative C construct, or when the user

has indicated a willingness to put up with the ad-

ditional overhead.

Both Scheme and C allow the user to de�ne

polymorphic procedures. In Scheme polymor-

phism is unlimited, with type checking done dy-

namically. C functions can be made polymorphic

through the use of type casts. This is limited

to types having a common size, and also pre-

vents any type checking on the polymorphic val-

ues. Pre-Scheme's static type checker, like that

of ML and Haskell, correctly handles parametric

polymorphism.

Pre-Scheme's module system is not part of stan-

dard Scheme but is inherited from Scheme 48 and

described in [9].

The main di�erences between Scheme and Pre-

Scheme are:

� A Pre-Scheme program's top-level forms are

evaluated at compile time and may make use

of full Scheme. This is exactly the evalua-

tion that happens when a Scheme program

is loaded into an interpreter.

� Pre-Scheme programs are statically typed by

the compiler using a type reconstruction al-

gorithm.

� Pre-Scheme has no garbage collection.

� In Pre-Scheme not all tail-recursive calls

are done with proper tail-recursion. Proper

tail recursion is guaranteed only for calls to

lambda forms bound by let and letrec or

when explicitly declared for a particular call.

Of course, since Pre-Scheme programs are

Scheme programs, they can be developed and run

using a Scheme implementation, in which case the

programmer can make full use of the Scheme im-

plementation's programming environment. This

is especially helpful for storage management. A

Pre-Scheme program can be developed and de-

bugged in the presence of a garbage collector, with

explicit storage management being added once

the program is otherwise satisfactory.

The above di�erences are not enough on their

own to get the desired program performance.

Pre-Scheme presupposes a powerful compiler that

does a fair amount of partial evaluation. Both

the fancy compiler and the restrictions are nec-

essary. Restrictions alone result in languages

such as C and Pascal, which are e�cient but not

very powerful. While performance comparable to

that of low-level languages is occasionally claimed

for implementations of high-level languages, these

claims are typically based on small benchmarks

and not on full applications.

The current Pre-Scheme compiler produces C

code and is based on the compiler described in

[8, 7]. It has been used to compile the Scheme

48 virtual machine [9], a moderate-sized program

that includes a byte-code interpreter and garbage

collector. This particular application program,

written in Pre-Scheme and compiled by the Pre-

Scheme compiler, performs as well as comparable

programs written directly in C. As shown in �g-

ure 1, when compiled with other systems, includ-

ing Orbit [10], an optimizing Scheme compiler, it

2

runs much more slowly. These timings are dis-

cussed in more detail in secion 6 below.

Scheme->C 120.00

Orbit, no in-lining 33.00

Orbit, in-lining 5.40

Pre-Scheme 0.84

Figure 1: Time, in seconds, for the Scheme 48

virtual machine to run (fib 22) (10

6

byte-code

instructions) on a MIPS R3000, when compiled

with various compilers.

2 How Pre-Scheme di�ers from

Scheme

This section describes the di�erences between

Scheme and Pre-Scheme in more detail.

2.1 Pre-Scheme is statically typed

Managing the type information needed for

Scheme's dynamic type checking and type dis-

crimination slows execution and denies the user

direct access to machine data and instructions.

For this reason Pre-Scheme is a statically typed

language. Pre-Scheme's type system is a paramet-

ric polymorphic one similar to ML's. The main

di�erences are in the handling of overloaded nu-

meric operators and the use of an extended notion

of polymorphism (see the section on type infer-

ence below).

The lack of dynamic type information means

that type discrimination procedures such as

pair? and number? are not available in Pre-

Scheme. In the future we plan to add to Pre-

Scheme record types, tagged unions, and tuples

similar to those in ML. Currently the only data

structures are those found in Scheme.

2.2 No garbage collection

Pre-Scheme's data model is that of Scheme's. Val-

ues are represented by references and arguments

are passed by reference. Static typing allows the

compiler to elide the references when the values

in question are either atomic, such as numbers, or

are known not to be side-a�ected.

The use of references means that values in gen-

eral require some kind of allocated storage. There

is no garbage collector, so any deallocation must

be done by the programmer, using the system pro-

cedure free.

The lack of garbage collection makes closures

less useful than in Scheme. However, in many in-

stances code that would ordinarily require a clo-

sure can be compiled without one using various

compiler optimizations. The compiler can be di-

rected to indicate any code that will result in the

creation of closures at run time.

2.3 Proper tail-recursion

Scheme implementations are required to be prop-

erly tail-recursive. There can be a signi�cant

run-time overhead for this on certain platforms.

For example, when compiling into C implement-

ing proper tail recursion involves the introduction

of some form of driver loop. For Pre-Scheme the

tail-recusion requirement only applies to calls to

local procedures, de�ned as lambda forms that are

bound by let or letrec. The programmer can

declare that individual calls are to be compiled as

properly tail-recursive. (GOTO proc arg1 ...)

is syntax indicating that proc should here be

called tail-recursively (assuming the goto form

occurs in tail position).

2.4 Call-with-current-continuation

call-with-current-continuation is not avail-

able in Pre-Scheme. We plan to add downward

continuations to Pre-Scheme in the future, since

they incur no signi�cant run-time cost.

3

2.5 Compile-time evaluation of top-

level forms

A Pre-Scheme program's top-level forms are eval-

uated at compile time. This is identical to the

evaluation that occurs when a Scheme program

is loaded. After this evaluation the program con-

sists of a sequence of de�nitions of procedures and

literal values. The programmer must specify, at

compile time, one or more entry points to the pro-

gram.

Compile-time evaluation allows programmers

to use all of Scheme in building and initializing

complex data structures, which may include pro-

cedures, that the rest of the compilation process

can treat as static. For example, if the program-

mer creates a vector of procedures at top-level, a

call to an (unknown) element of the vector can be

implemented as a computed-goto. All of Scheme

is available for the evaluation of top-level forms;

the restrictions described below do not apply.

3 Type reconstruction

The most complex restriction on Pre-Scheme pro-

grams is that they must be statically typed. The

goal for Pre-Scheme's static type checking is to

model Scheme's dynamic typing as accurately as

possible while still allowing the compiler to de-

cide upon a machine representation for every vari-

able, to insert any necessary coercions, and to

produce intelligible messages describing any type

errors. Type reconstruction is done using a Hind-

ley/Milner style polymorphic type reconstruction

algorithm augmented to deal with overloaded op-

erators and to insert coercion operations. Coer-

cions are limited to those that are computation-

ally inexpesive, for example between di�erent nu-

meric types. Coercions on procedural values are

not done, because they would require dynamically

allocating closures to hold the values and the code

to do the necessary coercions. Type conicts that

can be repaired by the insertion of an unsafe co-

ercion function are reported but do not stop the

compilation process.

The type reconstruction algorithm produces a

program augmented with coercions and a set of

type relations encoding constraints on the coer-

cions, similar to that in [12]. A representitive

sample of the type inference rules are given in

the appendix. Coercions, and their correspond-

ing relations, are introduced wherever an expres-

sion produces a value. After type reconstruction

is completed the compiler produces a solution to

the type relations, and so determines the actual

type of each coercion.

The type reconstruction algorithm allows for

four di�erent kinds of polymorphism:

� no polymorphism

� single size polymorphism. Di�erent types of

values are allowed, but they must all share a

single representation size.

� multi-size polymorphism. Di�erent copies of

the procedure are required for di�erent sizes

of values.

� full polymorphism. A separate copy of the

procedure's type, including any associated

relations, is produced for each use. The pro-

cedure itself will be in-lined by the compiler.

If every value representation were the same size,

single and multi-size polymorphism would be

identical. Most ML implementations work in this

fashion.

Full polymorphism is used when a procedure

will be in-lined. As an example of full polymor-

phism consider the procedure (define (add-one

x) (+ x 1)). Scheme's dynamic type checking

and type discrimination mean that add-one can

be used on any of Scheme's di�erent numeric

types, and its result will be coerced as necessary.

To duplicate this statically requires using multi-

ple copies of the add-one procedure, since di�er-

ent uses will require di�erent coercions or di�er-

ent addition operators. The Haskell type system

4

(define (carefully op)

(lambda (x y succ fail)

(let ((z (op (extract-fixnum x) (extract-fixnum y))))

(if (overflows? z)

(goto fail x y)

(goto succ (enter-fixnum z))))))

(define add-carefully (carefully +))

(define (arith op)

(lambda (x y)

(op x y return arithmetic-overflow)))

(define-primitive op/+ (number-> number->) (arith add-carefully))

Figure 2: Pre-Scheme code implementing the Scheme 48 virtual machine's addition instruction

allows the user to de�ne overloaded procedures,

but the overloading is resolved at run time, which

is unacceptable for Pre-Scheme. Mitchell's algo-

rithm for type inference with simple subtypes will

introduce the coercions, but assigns a single type

to add-one and would reject the following expres-

sion:

(* (add-one 1.5)

(vector-ref v (add-one 3)))

(add-one 1.5) will force add-one to take a oat-

ing point argument and return a oating point

result, which will cause a type error, since the re-

sult is passed to vector-ref, which requires an

integer.

4 An Example

This section presents a code example to show that

Pre-Scheme programs really are like Scheme pro-

grams, and not just C programs with Scheme syn-

tax. The code is taken from the Scheme 48 vir-

tual machine, which contains a byte-code inter-

preter, a garbage collector, and code for reading

and writing heap images. This virtual machine is

written entirely in Pre-Scheme. The example is

the code implementing the virtual machine's ad-

dition instruction, which operates on small tagged

integers.

The Scheme 48 virtual machine also serves as an

example of utility of having a well-de�ned seman-

tics for Pre-Scheme. The VLISP project [5] uses

Scheme 48 as the basis for a fully veri�ed Scheme

implementation. Verifying the correctness of the

Scheme 48 virtual machine would be much more

di�cult were portions of it written in C, as C's

semantics are much more complicated, and less

well de�ned, than Scheme's or Pre-Scheme's. As

it was, the VLISP members were able to write a

Pre-Scheme compiler that generated code for the

Motorola 68000 and prove it correct [14].

Figure 2 illustrates the coding style used in the

Scheme 48 virtual machine. The example consists

of the code implementing the addition instruc-

tion. The procedure carefully takes an arith-

metic operator and returns a procedure that per-

forms that operation on two tagged arguments,

either passing the tagged result to a success con-

tinuation, or passing the original arguments to

5

a failure continuation if the operation overows.

extract-fixnum and enter-fixnum remove and

add type tags to small integers. The function

overflows? checks that its argument has enough

unused bits for a type tag. carefully can then

be used to de�ne add-carefully which performs

addition on integers.

define-primitive is a macro that expands

into a call to the procedure define-opcode which

actually de�nes the instruction. The three argu-

ments to the macro are the instruction to de�ne,

input argument speci�cations, and the body of

the instruction. The expanded code retrieves ar-

guments from the stack, performs type checks and

coercions, and executes the body of the instruc-

tion. This is a simple Scheme macro that would

be painful, if not impossible, to write using C's

limited macro facility.

5 Implementation

The current Pre-Scheme compiler is based on the

transformational compiler described in [8, 7]. It

uses the following optimization techniques:

� Beta reduction (substituting known values

for variables).

� Block compilation. The entire program is

compiled at once. This maximizes the op-

portunities for performing beta reduction. It

also increases the number of programs that

will be accepted by the type checker by al-

lowing global dependency analysis.

� Transforming tail recursion to iteration. Tail

recursive loops are identi�ed and transformed

into iterative ones as described in [8].

� Hoisting closures. Closures with no free

lexically-bound variables are made into top-

level procedures.

� Constant folding.

� C translation tricks. A number of transfor-

mations are applied to take advantage of the

capabilities of the C compiler.

None of these techniques is new (for example,

see [1, 10, 8, 2]), they have not previously been

applied to a language intended for low-level pro-

gramming. Pre-Scheme programs do not pay any

penalty for with type tags, garbage collection,

or full run-time polymorphism, since Pre-Scheme

does not have them. As a result, the program-

mer can be given direct access to machine data.

The best that can be done in a full Scheme imple-

mentation is to give the programmer these bene-

�ts within a single procedure, and often not even

then. Not implementing Scheme in its full gen-

erality greatly increases the speed at which pro-

grams run the low-level expressiveness of the re-

sulting language.

The Scheme 48 virtual machine illustrates the

e�ectiveness of the Pre-Scheme compiler. Not in-

cluding comments, the virtual machine consists of

570 forms containing 2314 lines of Scheme code,

and is compiled to 13 C procedures contining 8467

lines of code.

Figure 3 shows the C code produced for the ad-

dition instruction. This is part of a large switch

statement which performs instruction dispatch.

This code is not what we would have written if

we had used C in the �rst place, but it is at least

as e�cient. The use of Pre-Scheme makes the

program (moderately) comprehensible and easy

to modify without incurring run-time cost. Fig-

ure 4 is the assembly code produced by GCC [16]

from the above, for a MIPS R3000 processor.

Not surprisingly, the machine code closely fol-

lows the C code, since the C code is straightfor-

ward. The most important job done by the C

compiler is register allocation.

While quite good, this code is not quite as good

as we could have done had we started out writing

in MIPS assembly language. For one thing, GCC

did some unhelpful tail merging, which, while

making the program a few instructions smaller,

6

case 46 : {

long arg2_267X;

RSstackS = (4 + RSstackS); /* pop an operand from the stack */

arg2_267X = *((long*)((unsigned char*)RSstackS));

if ((0 == (3 & (arg2_267X | RSvalS)))) { /* check operand tags */

long x_268X;

long z_269X;

x_268X = RSvalS;

z_269X = (arg2_267X >> 2) + (x_268X >> 2); /* remove tags and add */

if ((536870911 < z_269X)) { /* overflow check */

goto L20950;}

else {

if ((z_269X < -536870912)) { /* underflow check */

goto L20950;}

else {

RSvalS = (z_269X << 2); /* add tag and continue */

goto START;}}

L20950: {

merged_arg1K0 = 0;

merged_arg0K1 = arg2_267X;

merged_arg0K2 = x_268X;

goto raise_exception2;}}

else {

merged_arg1K0 = 0;

merged_arg0K1 = arg2_267X;

merged_arg0K2 = RSvalS;

goto raise_exception2;}}

break;

Figure 3: Compiler output for the Pre-Scheme code in �gure 2

1

resulted in the unnecessary jump at the end of

the code in �gure 4. Also, given that the tag

for small integers is zero, we could possibly have

added the two numbers with their tags intact and

used a hardware overow check instead of the two

comparisons above (on a machine that provided

such a check). These two failings could not been

avoided by writing Scheme 48 in C instead of in

Pre-Scheme. It is the C compiler that introduces

the unnecessary jump, and C o�ers no direct ac-

cess to the hardware overow check.

1

Many Scheme identi�ers are not legal C identi�ers,

while on the other hand C is case-sensitive and Scheme

is not. The compiler uses upper-case letters for the char-

6 Discussion

The timings in �gure 1 show that the Pre-Scheme

compiler does a much better job of compiling the

Scheme 48 virtual machine than either Orbit or

Scheme->C. Because the Scheme 48 virtual ma-

chine is written in a very modular fashion, with a

number of procedure-based interfaces, it contains

a large number of one and two line de�nitions.

acters that are legal in identi�ers in Scheme but not in C;

for example *val* becomes SvalS. The compiler also intro-

duces local variables to shadow global variables to improve

register usage (similar to [17]). These introduced variables

begin with R, thus RSvalS is a local variable shadowing the

global variable SvalS.

7

$L450: addu $19,$19,4 ; pop an argument from the stack

lw $6,0($19)

or $2,$6,$17 ; check tags on both arguments

andi $2,$2,0x0003

bne $2,$0,$L1337

li $2,0x1fff0000 ; for overflow check

ori $2,$2,0xffff

sra $4,$6,2 ; remove tags

sra $3,$17,2

addu $4,$4,$3 ; do the addition

slt $2,$2,$4

bne $2,$0,$L492 ; check for overflow

move $7,$17

li $2,-536870912 ; check for underflow

slt $2,$4,$2

beq $2,$0,$L1619

j $L1670

move $22,$0

$L1619: j $L221 ; jump to instruction dispatch

sll $17,$4,2 ; add tag

Figure 4: Assembly code for the C code in �gure 3

If these procedures are not compiled in-line the

system's performance is very poor, as shown in

the �rst two timings. In-lining these de�nitions

with Orbit gives much better performance, but

still not that of the Pre-Scheme compiler. In both

cases Orbit was in-lining standard Scheme proce-

dures and using �xnum-speci�c arithmetic. In-

lining was not done with Scheme->C as its mech-

anism for handling user in-lining declarations was

not su�ciently robust.

One reason that Orbit's output is so much

slower is that Orbit does not do top-level form

evaluation, and as a result compiles the code for

each of the virtual machine's op-codes as a sepa-

rate top-level procedure and the exectution of ev-

ery instruction then requires a full procedure call.

This cost could be avoided rewriting the virtual

machine as a single large case or cond expres-

sion, at the cost of convoluting the code. Other

costs are more fundamental, such as the need to

maintain type information at run time.

7 Related Work

In this section we compare Pre-Scheme with three

other approaches: the design of standard lan-

guages, high-performance Scheme and Lisp im-

plementations, and low-level languages with Lisp

syntax.

7.1 C, Pascal, and other low-level lan-

guages

These languages use syntactic restrictions to force

programmers to write programs that can be run

e�ciently using a particular type of implementa-

8

tion. Syntactic restrictions have the advantage of

being easy to understand and easy to enforce. Un-

fortunately, implementation limitations tend not

to be easily modelled in syntax, with the result

that the syntactic restrictions are much stronger

than necessary. A good example of this is how

closures are avoided in C and Pascal. Closures re-

sult from allowing the unrestricted use of nested

procedures as values. C allows the unrestricted

use of procedures as values, but does not al-

low nested procedure declarations. Pascal allows

nested procedures, but restricts how procedure

values may be used. Enforcing exactly the im-

plementation's restriction would require syntac-

tically distinguishing procedures that contained

free lexical references from those that don't.

7.2 Other languages with Lisp syntax

Lisp syntax has been used for a variety of low-

level languages, from assembly code (LAP code in

many Lisp implementations) to FORTRAN (the

misnamed Tinylisp used in [4]). This both allows

the use of syntactic macros and makes parsing the

language trivial. Other than the syntax, these

languages typically have little or nothing to do

with Lisp, or with high-level languages in general.

7.3 High-performance

implementations

Most e�orts to produce e�cient Scheme or Lisp

implementations are hampered by being required

to implement the full language. Low-level lan-

guage speed has been claimed for particular Lisp

and Scheme implementations, usually on the basis

of running some fairly small benchmarks [10, 13].

Here, instead of a small benchmark we have a non-

trivial, useful application, written in Pre-Scheme,

that performs as well as similar programs written

in C. Scheme 48, when the VM is compiled using

the Pre-Scheme compiler, runs at about the same

speed of SCM4, a widely used Scheme implemen-

tation hand-written in C (the two have very di�er-

ent implementation strategies and the actual rel-

ative speeds varies widely depending on the code

being run). As discussed in section 6, Scheme 48's

perforance decreases drastically when its VM is

compiled using the Orbit compiler.

Like the Pre-Scheme compiler, [3] and [17]

translate high-level languages (Scheme and ML)

into C. Scheme->C translates calls to global

Scheme procedures into calls to C procedures (as

does the Pre-Scheme compiler for most calls), and

thus has global tail recursion only if it is imple-

mented by the C implementation. CMU-ML->C

uses a driver loop to implement global tail re-

cursion in C (as the Pre-Scheme compiler does

when the user declares that a call should be tail-

recursive). Unlike Pre-Scheme, Scheme->C uses

type bits and both ->C implementations require

that programs be linked to a special run-time li-

brary. Scheme->C also does not do the global opti-

mizations necessary to get maximal performance.

8 Future Work

The Pre-Scheme language could be enhanced by

adding additional functionality to the compiler,

allowing a larger set of Scheme programs to be

compiled. Downward closures could be allowed,

as they are in Pascal, since doing so would not

compromise the e�ciency of compiled programs.

This might require declarations on the part of

the programmer to indicate when a closure could

be passed downwards, instead of needing to be

eliminated by beta reduction. Downward con-

tinuations could also be implemented using C

longjumps.

Obtaining maximally e�cient code from the

current compiler requires programmer directives

to make up for the compiler not having informa-

tion about the dynamic behavior of the program

or knowledge of the target architecture. For ex-

ample, the programmer may want a procedure

that deals with an exceptional case not to be in-

lined, since it might slow down the normal case,

9

or desire that within a given set of procedures a

particular global variable be shadowed by a local

variable, and thus end up in a machine register.

This opens up two avenues for further design and

experimentation. A more sophisticated compiler

could get by with less user information, and more

sophisticated directives could produce better C

output and increase the number of programs that

could be compiled e�ectively.

9 Conclusion

Pre-Scheme is Scheme restricted to those pro-

grams that can be compiled to very e�cient ob-

ject code using current techniques.

Pre-Scheme programs can be run as Scheme

programs or compiled into native code. Running

them as Scheme programs gives full access to the

debugging and automatic storage reclamation fea-

tures of the Scheme implementation. But unlike

Scheme programs, Pre-Scheme programs can be

statically type-checked and compiled into native

code that does not require type tags, garbage col-

lection or other features that slow execution. Pre-

Scheme programs' use of these Scheme features is

restricted to exactly those instances that can be

compiled e�ciently.

We have shown that these restrictions allow the

use of many of Scheme's powerful features in writ-

ing low-level programs, without sacri�cing perfo-

mance.

10 Acknowledgements

Pre-Scheme was developed as part of the

Scheme 48 project, which is a joint e�ort on the

part of Jonathan Rees and myself. Jonthan Rees,

Suresh Jaganathan, Rick Mohr, and Mitch Wand

provided many helpful comments on this paper.

References

[1] Alfred V. Aho, Ravi Sethi, and Je�rey D.

Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, Reading, MA,

1986.

[2] Andrew W. Appel. Compiling with

Continuations. Cambridge University Press,

Cambridge, 1992.

[3] J. Bartlett. Scheme!c: A portable

scheme-to-c compiler. Technical report,

DEC Western Research Laboratory, 1989.

[4] John Ellis. Bulldog: A Compiler for VLIW

Architectures. MIT Press, 1985.

[5] J. D. Guttman, L. G. Monk, J. D.

Ramsdell, W. M. Farmer, and V. Swarup.

A guide to vlisp, a veri�ed programming

language implementation. Technical Report

M92B091, The MITRE Corporation, 1992.

[6] P. Hudak and P. Wadler (eds.). Report on

the programming language haskell.

Technical Report YALEU/DCS/TR-777,

Department of Computer Science, Yale

University, New Haven, CT, 1990.

[7] Richard Kelsey. Compilation by program

transformation. Technical Report

YALEU/DCS/TR-702, Department of

Computer Science, Yale University, New

Haven, CT, 1989.

[8] Richard Kelsey and Paul Hudak. Realistic

compilation by program transformation. In

Conf. Rec. 16 ACM Symposium on

Principles of Programming Languages,

pages 281{292, 1989.

[9] Richard Kelsey and Jonathan Rees. A

tractable Scheme implementation. Lisp and

Symbolic Computation, 7:315{335, 1994.

10

[10] David A. Kranz, Richard Kelsey,

Jonathan A. Rees, Paul Hudak, James

Philbin, and Norman I. Adams. Orbit: An

optimizing compiler for scheme. In

Proceedings SIGPLAN '86 Symposium on

Compiler Construction, 1986. SIGPLAN

Notices 21 (7), July, 1986, 219-223.

[11] R. Milner, M. Tofte, and R. Harper. The

De�nition of Standard ML. MIT Press,

1990.

[12] John C. Mitchell. Type inference with

simple subtypes. Journal of Functional

Programming, 1:245{285, 1991.

[13] A. Nagasaka, Y. Shintani, and T. Ito.

Tachyon common lisp: An e�cient and

portable implementation of cltl2. In Proc.

1992 ACM Conf. on Lisp and Functional

Programming, 1992.

[14] D. P. Oliva, Ramsdell, and M J. D., Wand.

The vlisp veri�ed prescheme compiler. Lisp

and Symbolic Computation, 8(1 &

2):111{182, 1995.

[15] Jonathan A. Rees and eds. Clinger,

William C. Revised

3

report on the

algorithmic language scheme. SIGPLAN

Notices, 21(12):37{79, December 1986.

[16] R. Stallman. Using and Porting GNU CC.

Free Software Foundation, 1989.

[17] D. Tarditi, A. Acharya, and P. Lee. No

assembly required: Compiling Standard ML

to C. Technical report, School of Computer

Science, Carnegie Mellon University, 1991.

Appendix: type reconstruction

rules

Simpli�ed Scheme Syntax

N literal constant

(lambda (I) E) procedure

(let (I E

value

) E

body

) local binding

I identifier

(set! I E) variable binding mutation

(E

proc

E

arg

) procedure application

(if E

test

E

cons

E

alt

) conditional

The statement:

A ` E ! E

0

: t

means that in type environment A expression E

expands to E

0

, which has type t.

A[I 7! s] ` E) E

0

: t

A ` (lambda (I) E)) (lambda (I) E

0

) : s! t

A ` E

1

) E

1

0

: s

A[I 7! Oracle(A;E

1

0

; s)] ` E

2

) E

2

0

: t

A ` (let (I E

1

) E

2

)) (let (I E

1

0

) E

2

0

) : t

The oracle is needed to choose between the vari-

ous kinds of polymorphism.

integer v t

A ` N) (coerce-integer->t N) : t

t v t

0

A[I 7! t] ` I) (coerce-t->t

0

I) : t

0

A[I 7! t] ` E) E

0

: t

A[I 7! t] ` (set! I E)) (set! I E

0

) : unit

A ` E

1

) E

1

0

: s! t

A ` E

2

) E

2

0

: s

t v t

0

A ` (E

1

E

2

)) (coerce-t->t

0

(E

1

0

E

2

0

)) : t

0

A ` E

1

) E

1

0

: boolean

A ` E

2

) E

2

0

: t

A ` E

3

) E

3

0

: t

t v t

0

A ` (if E

1

E

2

E

3

)

) (coerce-t->t

0

(if E

1

0

E

2

0

E

3

0

)) : t

0

11

