Distributed secure programming

with Spritely Goblins

Christopher Lemmer Webber
https://dustycloud.org/

Fediverse: https://octodon.social/@cwebber

Birdsite: https://twitter.com/dustyweb

Spritely? Goblins?

Seeing is believing?

(well, using is even better but this is a talk)

TERMINAL PHASE DEMO GOES HERE

DISTRIBUTED CHAT DEMO GOES HERE

Distributed Programming Environment

Quasi-Functional State Management

Easy Transactions

Time Travel Included

Object Capability ("ocap") Security

(Alice) . :
L - --->(Carol)
\
Vv

(Alfrea)

(machine (vat (actormap {refr: (mactor object)})))

(Condensed) Goblins’ Heritage

. A

: (MO)
: Smalltalk
: Actors

: Scheme

: Joule

: E

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Send messages / invoke

|
Create actors |
I
|

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Send messages / invoke
Create actors

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Send messages / invoke
Create actors
Designate next behavior

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Send messages / invoke
Create actors
Designate next behavior

Carl Hewitt & co: the (classic) actor model

In response to a message, can:

Send messages / invoke - - WTF, why two?!
Create actors
Designate next behavior

The Synchronous Call-Return Worldview

~193X: A
~1958: (A () ...)
~1972: Smalltalk

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Synchronous Call-Return Worldview

heap
(actormap)

The Eventual Send Worldview

e ~1973: Actors

e ~1995: Joule
e ~1997: E (... kinda)

The Eventual Send Worldview

The Eventual Send Worldview

The Eventual Send Worldview

The Eventual Send Worldview

The Eventual Send Worldview

The Eventual Send Worldview

The Eventual Send Worldview

The Hybrid Worldview ("The Vat Model")

o ~1997: E
e ~2020: Goblins

The Hybrid Worldview ("The Vat Model")

actormap
territory

event loop
territory

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Hybrid Worldview ("The Vat Model")

The Vat Model Combines Both Worlds

Call-Return ($) | Eventual Send (<-)
_________________________ +___________________________
Same vat only | Any actor, anywhere
Immediate | Eventual

Return values | Promises

Transactions | Distributed w/o deadlocks

Open Source
Distributed Capabilities

Welcome to Erights.org, home of E,
the secure distributed persistent language
for capability-based smart contracting.

Quick Start | What's New? | What's E?
Smart Contracts | History & Talks | Feedback

[California Home] [Mirror in Virtual Tongal

We do not influence the course of events by
persuading people that we are right when we make
what they regard as radical proposals. Rather, we
exert influence by keeping options available when
something has to be done at a time of crisis.

--Milton Friedman

Object Capability Security

(éargi)

Object Capability Security

(éaroi)<—'

Object Capability Security

(éaroi)<—'

Lambda: The Ultimate Security Model

MASSACHUSETTS INSTITUTE OF
A.l. Memo No. TECHNOLOGY
1564 ARTIFICIAL INTELLIGENCE
LABORATORY

A Security Kernel Based on the Lambda
Calculus

Jonathan A. Rees

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.
Abstract

Cooperation between independent agents depends upon establishing a degree of
security. Each of the cooperating agents needs assurance that the cooperation will not
endanger resources of value to that agent. In a computer system, a computational
mechanism can assure safe cooperation among the system's users by mediating
resource access according to desired security policy. Such a mechanism, which is

called a security kernel, lies at the heart of many operating systems and programming
environments.

What's in your scope? That's your authority.

(Q\
P)
c

-

<
O
(©

=

Machine 1

(Alfrea)

. . L2, | .
(Alice) >(Bob)----" . .
f__ --->(Carol)

\ 1
\

(Alfrea) N . i____---('Carlos.)

)
E.' \ / elib / distrib

Prc\j 17 N}\,

Overview

The Four Tables

Resolving
RemotePromises

Three-Vat Granovetter
Introduction

Distributed Acyclic
Garbage Collection

Preparing for the
Pervasive Possibility of
Partition

Protocol Parameter
Types

CapTP:

The Capability Transport Protocol

The "data structure" defining the semantics of the
2-vat CatTP protocol

Explains the automatically generated
whenMoreResolved messages, and how they resolve
remote unresolved references (RemotePromises).

What happens when Alice, Bob, and Carol are in
three separate vats?

How we collect what distributed garbage we can.

Cleaning up after the show's over.

Defines the types used in the protocol declarations
below.

Distributed (acyclic) garbage collection!

E?“\

Prc\j 17 N}\,

The Capability Transport Protocol

Overview

The "data structure" defining the semantics of the

The Four Tables 2-vat CatTP protocol

Explains the automatically generated
whenMoreResolved messages, and how they resolve
remote unresolved references (RemotePromises).

Resolving
RemotePromises

Three-Vat Granovetter What happens when Alice, Bob, and Carol are in
Introduction three separate vats?

Distributed Acyclic

Garbaga/Collection How we collect what distributed garbage we can.

Preparing for the
Pervasive Possibility of Cleaning up after the show's over.
Partition

Protocol Parameter Defines the types used in the protocol declarations
Types below.

Promise pipelining!

Convenient and network efficient!

(define (~greeter bcom my-name)
(lambda (your-name)
(format "Hello ~a, my name is ~a!" your-name my-name)))

(define (~greeter bcom my-name)
(lambda (your-name)
(format "Hello ~a, my name is ~a!" your-name my-name)))

; Make a new instance of “greeter

(define my-greeter
(spawn ~greeter "Alice"))

(define (~greeter bcom my-name)
(lambda (your-name)
(format "Hello ~a, my name is ~a!" your-name my-name)))

; Make a new instance of “greeter

(define my-greeter
(spawn ~greeter "Alice"))

($ my-greeter "Bob")
; => "Hello Bob, my name is Alice!"

(define (~counter bcom [count 0])
(methods
[(1ncr)
(bcom (“counter bcom (addl count)))]
[(get-count)
count]))

(define (~counter bcom [count 0])
(methods
[(1ncr)
(bcom (“counter bcom (addl count)))]
[(get-count)
count]))

(define my-counter
(spawn “counter))

(define (~counter bcom [count 0])
(methods
[(1ncr)
(bcom (“counter bcom (addl count)))]
[(get-count)
count]))

(define my-counter
(spawn “counter))

($ my-counter 'get-count)
; == 0

(define (~counter bcom [count 0])
(methods
[(1ncr)
(bcom (“counter bcom (addl count)))]
[(get-count)
count]))

(define my-counter
(spawn “counter))

($ my-counter 'get-count)
; == 0

($ my-counter 'incr)
($ my-counter 'get-count)
p => 1

(define (~counter bcom [count 0])
(methods
[(1ncr)
(bcom (“counter bcom (addl count)))]
[(get-count)
count]))

(define my-counter
(spawn “counter))

($ my-counter 'get-count)
; == 0

($ my-counter 'incr)
($ my-counter 'get-count)
p => 1

($ my-counter 'incr)

($ my-counter 'incr)

($ my-counter 'get-count)
; => 3

(define (~counter bcom [count 0])
(methods
[(incr)
(bcom (~“counter bcom (addl count)))]
[(get-count)
count]))

(define (~counter bcom [count 0])
(methods
[(incr)
(bcom (~“counter bcom (addl count)))]
[(get-count)
count]))

(define (~counting-greeter bcom my-name)
(define counter
(spawn “counter))
(lambda (your-name)
(] counter 'incr)

(format "Hello ~a, my name is ~a! [call #-~al"
your-name my-name (| counter 'get-count))))

(define (~counter bcom [count 0])
(methods
[(incr)
(bcom (~“counter bcom (addl count)))]
[(get-count)
count]))

(define (~counting-greeter bcom my-name)
(define counter
(spawn “counter))
(lambda (your-name)
(] counter 'incr)

(format "Hello ~a, my name is ~a! [call #-~al"
your-name my-name (| counter 'get-count))))

(spawn “counting-greeter "Alice")

(define (~counter bcom [count 0])
(methods
[(incr)
(bcom (~“counter bcom (addl count)))]
[(get-count)
count]))

(define (~counting-greeter bcom my-name)
(define counter
(spawn “counter))
(lambda (your-name)
(] counter 'incr)

(format "Hello ~a, my name is ~a! [call #-~al"
your-name my-name (| counter 'get-count))))

(spawn “counting-greeter "Alice")

(l mY'COUHting-greeter "Bobu)
; => "Hello Bob, my name is Alice! [call #1]"

(define (~counter bcom [count 0])
(methods
[(incr)
(bcom (~“counter bcom (addl count)))]
[(get-count)
count]))

(define (~counting-greeter bcom my-name)
(define counter
(spawn “counter))
(lambda (your-name)
(] counter 'incr)
(format "Hello ~a, my name is ~a! [call #~a]"
your-name my-name (| counter 'get-count))))

(spawn “counting-greeter "Alice")

(l mY'COUHting-greeter "Bobu)
; => "Hello Bob, my name is Alice! [call #1]"

(| my-counting-greeter "Betsy")
; => "Hello Betsy, my name is Alice! [call #2]"

(define (~counter bcom [count 0])
(methods
[(incr)
(bcom (~“counter bcom (addl count)))]
[(get-count)
count]))

(define (~counting-greeter bcom my-name)
(define counter
(spawn “counter))
(lambda (your-name)
(] counter 'incr)
(format "Hello ~a, my name is ~a! [call #~a]"
your-name my-name (| counter 'get-count))))

(spawn “counting-greeter "Alice")

(l mY'COUHting-greeter "Bobu)
; => "Hello Bob, my name is Alice! [call #1]"

(| my-counting-greeter "Betsy")
; => "Hello Betsy, my name is Alice! [call #2]"

(] my-counting-greeter "Billy")
; => "Hello Billy, my name 1is Alice! [call #3]"

GREETER WHICH CALLS COUNTER GOES HERE

CALLING W/ ASYNC MESSAGE PASSING GOES HERE

PROMISE PIPELINING EXAMPLE GOES HERE

Promise pipelining!

Machines grow faster and memories grow larger. But the
speed of light is constant and New York is not getting

any closer to Tokyo.

—Mark S. Miller

Why promises instead of coroutines?

Ethereum Smart Contract Best Practices

Known Attacks

The following is a list of known attacks which you should be aware of, and defend
against when writing smart contracts.

Reentrancy

One of the major dangers of calling external contracts is that they can take over the
control flow, and make changes to your data that the calling function wasn't expecting.
This class of bug can take many forms, and both of the major bugs that led to the DAO's
collapse were bugs of this sort.

Simple money in 25 lines of code!

(define (”“mint bcom)
(define-values (decr-seal decr-unseal decr-sealed?)
(make-sealer-triplet 'mint))
(define (“purse bcom initial-balance)
(define-cell balance
initial-balance)
(define (<=-balance? amount)
(<= amount ($ balance)))
(define/contract (decr amount)
(-> (and/c integer? (>=/c 0) <=-balance?)
any/c)
($ balance (- ($ balance) amount)))
(define/contract (deposit-method amount src)
(-> (and/c integer? (>=/c 0)) any/c any/c)
((decr-unseal ($ src 'get-decr)) amount)
($ balance (+ ($ balance) amount)))
(methods
[(get-balance) ($ balance)]
[(sprout) (spawn “purse 0)]
[deposit deposit-method]
[(get-decr) (decr-seal decr)]))
(define/contract (fiat-make-purse initial-balance)
(-> (and/c integer? (>=/c 0)) any/c)
(spawn “purse initial-balance))
(methods [new-purse fiat-make-purse]))

