
The Heart of Spritely: Distributed Objects
and Capability Security

Christine Lemmer-Webber, Randy Farmer

Table of Contents
1. Introduction
2. Capability security as ordinary programming
3. Spritely Goblins: Distributed, transactional object programming

3.1. A taste of Goblins
3.1.1. A simple greeter
3.1.2. State as updating behavior
3.1.3. Objects which contain objects
3.1.4. Asynchronous message passing
3.1.5. Transactions make errors survivable
3.1.6. Promise pipelining
3.1.7. Errors propagate through pipelines

3.2. Security as relationships between objects
3.2.1. Making and editing a blogpost
3.2.2. A blog to collect posts
3.2.3. Group-style editing
3.2.4. Revocation and accountability
3.2.5. Guest post with review

3.3. The vat model of computation
3.4. Turns are cheap transactions
3.5. Time-travel distributed debugging
3.6. Safe serialization and upgrade
3.7. Distributed behavior and why we need it

4. OCapN: A Protocol for Secure, Distributed Systems
5. Application and library safety
6. Portable, encrypted storage
7. Conclusions
8. Appendix: Related work
9. Appendix: Following the code examples
10. Appendix: A small scheme and wisp primer
11. Appendix: Utilities for rendering blog examples
12. Appendix: Implementing sealers and unsealers
13. Appendix: Glossary
14. Appendix: Acknowledgments
15. Appendix: ChangeLog
NOTE: This is an early draft. Has yet to be reviewed by the technical review board.

This paper is the second in a three-part series explaining Spritely's thinking and design. The first
paper, Spritely: New Foundations for Networked Communities, explains the problems which face
contemporary social network design. This paper explains the necessary technical toolbox available

1

spritely-core.odt/spritely-framing.org

for programmers to build out Spritely's vision. The third paper in the series, Spritely for Secure
Applications and Communities, ties the first two papers together by showing what how the
architecture for user-facing software which fulfills the vision of the first paper can be built on top of
ideas from this paper.

While Spritely's core tooling is generally useful and may be of interest to a wide variety of
programming backgrounds, it is designed with a purpose: to give us the firm footing to be able to
achieve the ambitious journey of fulfilling the full user-facing Spritely vision. If your goal is to
understand Spritely's full vision, it is our recommendation that you read each paper in order.

1. Introduction
Building peer-to-peer applications on contemporary programming architecture is a complicated
endeavor which requires careful planning. Building the kind of fully-decentralized social
networking design that Spritely aspires for would be too hard on systems that assume traditional
client-server architecture and authority models. If each of our needs runs contrary to the grain of
expected paradigms, we will have a hard time achieving our goals. Still, we must provide a
development model which is comfortable in ways which match programmer intuitions. Spritely's
core layers of abstractions achieve each of these seemingly contradictory requirements by drawing
together decades of research from object capability security and programming language design
communities.

Spritely's core layers of abstractions make building secure peer-to-peer applications to be as natural
as any other programming. Spritely provides an integrated system for distributed asynchronous
programming, transactional error handling, time-travel debugging, and safe serialization. All this
under a security model resembling ordinary reference passing, reducing most considerations to a
simple slogan: "If you don't have it, you can't use it."

2. Capability security as ordinary programming
The Principle of Least Authority (POLA) says that code should be granted only the
authority it needs to perform its task and no more. Code has a lot of power. Code can
read your files, delete your files, send your files (and all of the information within them)
to someone else, record your keystrokes, use your laptop camera, steal your identity,
hold your computer for ransom, steal your cryptocurrency, drain your bank account, and
more. But most of the code that we write doesn't need to do any of those things – so
why do we give it the authority to do so?

POLA is ultimately about eliminating both ambient and excess authority. It's not a motto
that is meant to be inspirational; POLA can actually be achieved. But how?

– Kate Sills, POLA Would Have Prevented the Event-Stream Incident

The power of this model is best understood by contrast to the prevailing authority model, common
to Unix and nearly everything which has followed since. If Alisha is logged in to her computer and
wants to play Solitaire, she can run it like so:

Applications run as Alisha!
Can do anything Alisha can do!
> solitaire

Using an Access Control List permission system, Solitaire, the most innocuous-seeming of
programs, can wreak the maximum amount of havoc possible to Alisha's computing life. Solitaire

2

https://medium.com/agoric/pola-would-have-prevented-the-event-stream-incident-45653ecbda99
spritely-core.odt/spritely-for-users.org
spritely-core.odt/spritely-for-users.org

could snoop through Alisha's love letters, upload her banking information to a shady website, and
delete or cryptolock her files (possibly demanding a tidy sum on behalf of some shady group
somewhere to release access).

What makes seemingly-innocent Solitaire so dangerous is the ambient authority of Access Control
List operating systems. In such a computing environment, when Alisha types "solitaire" in a
terminal window or double clicks on its icon, her computer runs Solitaire as Alisha. Solitaire can do
everything Alisha can do, including many dangerous things Alisha would not like.

The contrast with an object capability environment is strong. Following the principle of least
authority, programs, objects, and procedures are defined in an environment with no dangerous
authority. In an object capability computing environment, Solitaire would only be able to run with
the authority it has been handed.

Let's think of solitaire as being a procedure within an object capability secure language. (To
make it obvious that these ideas can extend to a variety of language environments,1 we will use a
syntax which resembles something like Javascript or Python.) Solitaire, being run, cannot do
anything particularly dangerous… but it can't do anything particularly useful either.

// Runs in an environment with no special authority...
// not even the ability to display to the screen!
> solitaire()

As-is, all solitaire can do is return a value… but Solitaire as a game requires interactivity: it should
display to the screen, and it should be able to read input through the keyboard and mouse.

Let's introduce a capability which has been granted more power by the underlying system,
makeWinCanvas(windowTitle). Let's say that solitaire can take a first argument which
takes a window + canvas representing object which is able to read keyboard and mouse input, but
only while the window is active. We will be able to use the former to produce a value to pass to the
latter, with exactly that authority and no more:

// Constructs a new window
> solitaireWin = makeWinCanvas("Safe Solitaire")
// Pass it to solitaire
> solitaire(solitaireWin)

If we want to allow Solitaire to be able to access a high score file, we could imagine that the
solitaire procedure could accept a third procedure for exactly that purpose:

> scoreFile = openFile("~/.solitaire-hs.txt", "rw")
> solitaire(solitaireWin, scoreFile)

Consider the power of this: solitaire now has access to display to the solitaireWin window, it
can read from the keyboard and mouse when the window is active, it can only write to the specific
file we have given access to, but it cannot do anything else dangerous. It cannot access the network.
It cannot read or write files from the filesystem arbitrarily (it only access the high score file it was
given). It cannot act as a keylogger (it can only read keyboard and mouse events while the window
is being actively used by the user).

We have built our object capability security model on completely ordinary reference passing,
familiar to the kind of programming developers do every day. What can and cannot be done is clear:
if you don't have it, you can't use it.

1 The requirements for a programming language to be considered object capability safe are reasonably minimal (no
ambient authority, no global mutable state, lexical scoping with reference passing being the primary mechanism for
capability transfer, and importing a library should not provide access to interesting authority). See A Security Kernel
Based on the Lambda Calculus for more information.

3

http://mumble.net/~jar/pubs/secureos/secureos.html
http://mumble.net/~jar/pubs/secureos/secureos.html

3. Spritely Goblins: Distributed, transactional object
programming

At the heart of Spritely is Goblins, its distributed object programming environment.2 Goblins
provides an intuitive security model, automatic local transactions for locally synchronous
operations, and an easy to use and efficient asynchronous programming for encapsulated objects
which can live anywhere on the network. Its networking model abstracts away these details so the
programmer can focus on object programming rather than protocol architecture. Goblins also
integrates powerful distributed debugging tools, and a process persistence and upgrade model which
respects its security fundamentals.3

Within Goblins, when we say distributed object, we are referring to a model where many
independent objects communicate with other objects on many different machines. In other words,
when we refer to distributed object programming, we mean "a distributed network of independent
objects".4 Objects are built out of encapsulated behavior: an object is encapsulated in the sense that
its inner workings are opaque to other objects, and (contrary to the focus of many systems today)
objects are behavior-oriented rather than data-oriented. Goblins enables intentional collaboration
between objects even though the network is assumed hostile as a whole.

Goblins utilizes techniques common to functional programming environments which enable cheap
transactionality (and by extension, time travel). The otherwise tedious plumbing associated with
these kinds of techniques is abstracted implicitly so the developer can focus on object behavior and
interactions.

3.1. A taste of Goblins

The following examples will illustrate Goblins using its implementation in Guile (which is a type of
Scheme, which is itself a type of Lisp).5 While the ideas here could be ported across many kinds of

2 In recent years there has been enormous pushback against the term "object", stemming mostly from functional
programming spaces and PTSD developed from navigating complicated Java-esque class hierarchies. However, the
term "object" means many different things; Jonathan Rees identified nine possible properties associated with
programming uses of the word "object". For Goblins, objects most importantly means addressable entities with
encapsulated behavior. Goblins supports distributed objects in that it does not particularly matter where an object
lives for asynchronous message passing; more on this and its relationship with actors later.

3 Goblins draws inspiration largely from two sources. The first is Scheme (on which its current implementations are
built), and particularly the "W7" Scheme variant found in A Security Kernel Based on the Lambda Calculus, and the
E programming language. (Both of these have rich histories of their own, particularly E's predecessor Joule, so of
course Goblins inherits those too.) W7's primary contribution is the observation that a purely lexically scoped
language, with Scheme in particular, is already an excellent candidate for an object capability security environment.
E's primary contribution is the distributed object approach that Goblins largely adopts, including the first version of
the CapTP protocol used by Goblins as the object communication layer abstraction of OCapN. Goblins can thus be
seen as a combination of Scheme/W7 and E, with Goblins' primary innovative contribution being its transactional
design.

4 This is not to be confused with "the objects themselves are distributed across different machines", which we do
address as the Unum Pattern in the Distributed behavior and why we need it section.

Similarly we do not mean distributed convergent machines (such as blockchains or quorums), where a single abstract
machine, with all of its contained objects, can be deterministically replicated by multiple independent machines on
the network. While such designs can be composable with Spritely Goblins (or even easily built on top of its
transactional architecture), they are not the essential infrastructure to achieve Spritely's goals. Further discussion of
convergent machines is reserved for a future paper.

5 At present, Goblins has two implementations, one on Racket (the initial implementation), and one on Guile (which
is newer). While both will be maintained and interoperable with each other in terms of distributed communication,
the Guile implementation is becoming the "main" implementation on top of which the rest of Spritely is being built.
Goblins' ideas are fairly general though and Goblins is implemented simply as a library on top of a host
programming language, and Goblins' key ideas could be ported to any language with sensible lexical scoping (but it

4

https://www.gnu.org/software/guile/
https://racket-lang.org/
http://erights.org/history/joule/
http://www.erights.org/
http://mumble.net/~jar/pubs/secureos/secureos.html
http://www.mumble.net/~jar/articles/oo.html

programming languages, Scheme's minimalism and flexibility allow for cleanly expressing the core
ideas of Goblins.

Prior knowledge of Scheme is not necessary, but some familiarity with programming in general is
expected. We have chosen an unusual representation of Lisp syntax which is whitespace-based
instead of parenthetical, named Wisp.6 Experience has shown that while parenthetical
representations of Lisp tend to feel alien to newcomers with prior programming experience, Wisp
tends to look fairly pleasantly like pseudocode. Subexpressions are simply indented greater than
their parents, or (more rarely) can be inlined by using a colon. Parenthetical notation is also
supported but is used sparingly. Lines which start with a period means that the line does not start a
subexpression but is part of its parent. (The lines beginning with periods are typically the ugliest
part; the reader is encouraged to ignore these while reading and focus on the shape of the code.)

Code examples that have lines preceding with REPL> are meant to demonstrate examples of
interactive use. Lines which follow and are preceded by underscores represent continued entries for
the same expression.

We have aimed to have these examples be as simple as possible to understand just by reading them.
Some readers will wish to try or play with the examples for themselves; we have provided two
appendices if you are this kind of reader:

• Appendix: Following the code examples shows how to get the examples up and running
(including how to get past some hand-waving we have done for the REPL> examples).

• Appendix: A small scheme and wisp primer gives more detailed explanations of the host
language itself.

Again, neither of these is required to follow along.

Now you're ready to go. Read on!

3.1.1. A simple greeter

Here we will give an extremely brief taste of what programming in Goblins is like. The following
code is adapted from the Guile version of Goblins.6

First, let us implement a friend who will greet us:

;; define with next argument wrapped in parentheses
;; defines a named function
define (^greeter _bcom our-name) ; constructor (outer procedure)
 lambda (your-name) ; behavior (inner procedure)
 format #f "Hello ~a, my name is ~a!" ; returned implicitly
 . your-name our-name

The outer procedure, defined by define, is named ^greeter, which is its constructor.7 The
inner procedure, defined by the lambda (an "anonymous function"), is its behavior procedure,
which implicitly returns a formatted string. Both of these are most easily understood by usage, so
let's try instantiating one:

;; define with next argument *not* in parentheses
;; defines an ordinary variable

might not look as nice or be as pleasant to use or elegant).
6 Wisp's rules are defined in SRFI 119. Wisp's key feature is that it has all the same structural properties as a

parenthetical representation and can be translated back and forth between the the parenthetical form and the
whitespace-based form bidirectionally with few key rules.

7 The ^ character is conventionally prefixed on Goblins constructors and is called a hard hat, referring to the kind
used by construction workers.

5

https://srfi.schemers.org/srfi-119/srfi-119.html

define gary
 spawn ^greeter "Gary"

As we can see, spawn's first argument is the constructor for the Goblins object which will be
spawned. For now, we'll ignore the _bcom, which is not used in this first example (an underscore
prefix is the conventional way to note an unused variable; we'll see some examples where this is
used soon). The rest of the arguments to spawn are passed in as the rest of the arguments to the
constructor. So in our case, "Gary" is passed as the value of our-name.

The constructor returns the procedure representing its current behavior. In this case, that behavior is
a simple anonymous lambda. We can now invoke our gary friend using the synchronous call-
return $ operator:8

REPL> $ gary "Alice"
;; => "Hello Alice, my name is Gary!"

As we can see, "Alice" is passed as the value for your-name to the inner lambda behavior-
procedure. Since our-name was already bound through the outer constructor procedure, the inner
behavior is able to pass both of these names to format to give a friendly greeting.

3.1.2. State as updating behavior

Let's introduce a simple cell which stores a value. This cell will have two methods: 'get retrieves
the current value, and 'set replaces the current value with a new value.

define (^cell bcom val)
 methods ; syntax for first-argument-symbol-based dispatch
 (get) ; takes no arguments
 . val ; returns current value
 (set new-val) ; takes one argument, new-val
 bcom : ^cell bcom new-val ; become a cell with the new value

Let's try it. Cells hold values, and so do treasure chests, so let's make a treasure chest flavored cell.
Taking things out and putting them back in is easy.

REPL> define chest
_____ spawn ^cell "sword"
REPL> $ chest 'get
;; => "sword"
REPL> $ chest 'set "gold"
REPL> $ chest 'get
;; => "gold"

Now we can see what bcom is: a capability specific to this object instance which allows it to
change its behavior! (For this reason, bcom is pronounced "become"!)

methods was also new to this version. It turns out that methods is simply syntax sugar, a macro
which returns a procedure which supports symbol dispatch on its first argument. There is nothing
special about methods: you could easily write your own version or use it outside of Goblins
objects to build general symbol-based-method-dispatch.

8 Any code line preceded by REPL> represents the prompt for interactively entered code at a developer's REPL (Read
Eval Print Loop). Lines following represent expected returned values or behavior, and those prefixed with =>
represent an expected return value.

6

3.1.3. Objects which contain objects

Objects can also contain and define other object references, including in their outer constructor
procedure.

Here is the definition of a "counting greeter" we call ^cgreeter:

define (^cgreeter _bcom our-name)
 define times-called ; keeps track of how many times 'greet called
 spawn ^cell 0 ; starts count at 0
 methods
 (get-times-called)
 $ times-called 'get
 (greet your-name)
 define current-times-called
 $ times-called 'get
 ;; increase the number of times called
 $ times-called 'set
 + 1 current-times-called
 format #f "[~a] Hello ~a, my name is ~a!"
 $ times-called 'get
 . your-name our-name

As we can see near the top, times-called is instantiated as an ^cell like the one we defined
earlier. The current value of this cell is returned by get-times-called and is updated every
time the greet method is called:

REPL> define julius
_____ spawn ^cgreeter "Julius"
REPL> $ julius 'get-times-called
;; => 0
REPL> $ julius 'greet "Gaius"
;; => "[1] Hello Gaius, my name is Julius!"
REPL> $ julius 'greet "Brutus"
;; => "[2] Hello Brutus, my name is Julius!"
REPL> $ julius 'get-times-called
;; => 2

3.1.4. Asynchronous message passing

We have shown that the behavior of objects may be invoked synchronously with $. However, this
only works if two objects are both defined on the same machine on the network and the same event
loop within that machine. Since Goblins is designed to allow for object invocation across a
distributed network, what can we do?

This is where <- comes in. In contrast to $, <- can be used against objects which live anywhere,
even on remote machines. However, unlike invocation with $, we do not get back an immediate
result, we get a promise:

REPL> <- julius 'greet "Lear"
;; => #<promise>

This promise must be listened to. The procedure to listen to promises in Goblins is called on:

REPL> on (<- call-me 'greet)
_____ lambda (got-back)
_____ format #t "Heard back: ~a\n"
_____ . got-back
;; Prints out, at some point in the future:

7

;; "Heard back: [3] Hello Lear, my name is Julius!"

Not all communication goes as planned, especially in a distributed system. on also supports the
keyword arguments of #:catch and #:finally, which both accept a procedure defining
handling errors in the former case and code which will run regardless of successful resolution or
failure in the latter case:

REPL> define (^broken-bob _bcom)
_____ lambda ()
_____ error "Yikes, I broke!"
REPL> define broken-bob
_____ spawn ^broken-bob
REPL> on (<- broken-bob)
_____ lambda (what-did-bob-say)
_____ format #t "Bob says: ~a\n" what-did-bob-say
_____ . #:catch
_____ lambda (err)
_____ format #t "Got an error: ~a\n" err
_____ . #:finally
_____ lambda ()
_____ display "Whew, it's over!\n"

3.1.5. Transactions make errors survivable

Mistakes happen, and when they do, we'd like damage to be minimal. But with many moving parts,
accomplishing this can be difficult.

However, Goblins makes our life easier. To see how, let's intentionally insert a couple of print
debugging lines (with pk, which is pronounced and means "peek") and then an error:

define (^borked-cgreeter _bcom our-name)
 define times-called
 spawn ^cell 0
 methods
 (get-times-called)
 $ times-called 'get
 (greet your-name)
 pk 'before-incr : $ times-called 'get
 ;; increase the number of times called
 $ times-called 'set
 + 1 ($ times-called 'get)
 pk 'after-incr : $ times-called 'get
 error "Yikes"
 format #f "[~a] Hello ~a, my name is ~a!"
 $ times-called 'get
 . your-name our-name

Now let's spawn this friend and invoke it:

REPL> define horatio
_____ spawn ^borked-cgreeter "Horatio"
REPL> $ horatio 'get-times-called
;; => 0
REPL> $ horatio 'greet "Hamlet"
;; pk debug: (before-incr 0)
;; pk debug: (after-incr 1)
;; ice-9/boot-9.scm:1685:16: In procedure raise-exception:
;; Yikes
;; Entering a new prompt. Type `,bt' for a backtrace or `,q' to continue.

8

Whoops! Looks like something went wrong! We can see from the pk debugging that the times-
called cell should be incremented to 1. And yet…

REPL> $ horatio 'get-times-called
;; => 0

We will cover this in greater detail later, but the core idea here is that synchronous operations run
with $ are all done together as one transaction. If an unhandled error occurs, any state changes
resulting from synchronous operations within that transaction will simply not be committed. This is
useful, because it means most otherwise difficult cleanup steps are handled automatically.

This also sits at the foundation of Spritely Goblins' time travel debugging features. All of this will
be discussed in greater detail in sections later in this document: The vat model of computation,
Turns are cheap transactions, and Time-travel distributed debugging.

3.1.6. Promise pipelining

"Machines grow faster and memories grow larger. But the speed of light is constant and
New York is not getting any closer to Tokyo."

— Mark S. Miller, Robust Composition: Towards a Unified Approach to Access Control
and Concurrency Control

Promise pipelining provides two different features at once:

• A convenient developer interface for describing a series of asynchronous actions, allowing
for invoking the objects which promises will point to before they are even resolved
(sometimes before the objects even exist!)

• A network abstraction that eliminates many round trips

Consider the following car factory, which makes cars carrying the company name of the factory:

;; Create a "car factory", which makes cars branded with
;; company-name.
define (^car-factory bcom company-name)
 ;; The constructor for cars we will create.
 define (^car bcom model color)
 methods ; methods for the ^car
 (drive) ; drive the car
 format "*Vroom vroom!* You drive your ~a ~a ~a!"
 . color company-name model
 ;; methods for the ^car-factory instance
 methods ; methods for the ^car-factory
 (make-car model color) ; create a car
 spawn ^car model color

Here is an instance of this car factory, which we will call fork-motors:

;; Interaction on machine A
REPL> define fork-motors
_____ spawn ^car-factory "Fork"

Since asynchronous message passing with <- works across machines, it does not matter whether
interacitons with =fork-motors are local or via objects communicating over the network. We will
treat fork-motors as living on machine A, and so the following interactions will happen with
invocations originating from machine B.

9

http://www.erights.org/talks/thesis/
http://www.erights.org/talks/thesis/

Let's send a message to fork-motors invoking the 'make-car method, receiving back a
promise for the car which will be made, which we shall name car-vow (-vow being the
conventional suffix given for promises in Goblins):

;; Interaction on machine B, communicating with fork-motors on A
REPL> define car-vow
_____ <- fork-motors 'make-car "Explorist" "blue"

So we have a promise to a future car reference, but not the reference itself. We would like to drive
the car as soon as it rolls off the lot of the factory, which of course involves sending a message to
the car.

Without promise pipelining, making use of the tools we have already shown (and following the
pattern most other distributed programming systems use), we would end up with something like:

;; Interaction on machine B, communicating with A
REPL> on car-vow ; B->A: first resolve the car-vow
_____ lambda (our-car) ; A->B: car-vow resolved as our-car
_____ on (<- our-car 'drive) ; B->A: now we can message our-car
_____ lambda (val) ; A->B: result of that message
_____ format #f "Heard: ~a\n" val

With promise pipelining, we can simply message the promise of the car directly. The first benefit
can be observed from code compactness, in that we do not need to do an on of car-vow to later
message our-car, we can simply message car-vow directly:

;; Interaction on machine B, communicating with A
REPL> on (<- car-vow 'drive) ; B->A: send message to future car
_____ lambda (val) ; A->B: result of that message
_____ format #f "Heard: ~a\n" val

While clearly a considerable programming convenience, the other advantage of promise pipelining
is a reduction of round-trips, whether between our event-loop vats or across machines on the
network.

This can be understood by looking at the comments to the right of the two above code interactions.
The message flow in the first case looks like:

B => A => B => A => B

The message flow in the second case looks like:

B => A => B

In other words, machine B can say to machine A: "Make me a car, and as soon as that car is ready, I
want to drive it!"

With this in mind, the promise behind Mark Miller's quote at the beginning of this section is clear.9
If two objects are on opposite ends of the planet, round trips are unavoidably expensive. Promise
pipelining both allows us to make plans as programmers and allows for Goblins to optimize
carrying out those steps as bulk operations over the network.

3.1.7. Errors propagate through pipelines

TODO: Write this section. Less high of a priority as the others, though.

9 Like so many examples in this document, the designs of promise pipelining and the explanation of its value come
from the E programming language, the many contributors to its design, and Mark S. Miller's extraordinary work
documenting that work and its history. If you find this section interesting, both the the Promise Pipelining page from
erights.org and sections 2.5 and 16.2 of Mark Miller's dissertation.

10

http://www.erights.org/talks/thesis/markm-thesis.pdf
http://erights.org/
http://www.erights.org/elib/distrib/pipeline.html

define (^lessgood-car-factory bcom company-name)
 define (^car bcom model color)
 lambda ()
 format #f "*Vroom vroom!* You drive your ~a ~a ~a!"
 . color company-name model
 define (make-car model color)
 error "Your car exploded on the factory floor! Ooops!"
 spawn ^car model color
 make-car

define forked-motors
 a-vat 'spawn ^lessgood-car-factory "Forked"

b-vat 'run
 lambda ()
 define car-vow
 <- forked-motors "Exploder" "red"
 define drive-noise-vow
 <- car-vow
 on drive-noise-vow
 lambda (val)
 format #f "Heard: ~a\n" val
 . #:catch
 lambda (err)
 format #t "Caught: ~a\n" err

3.2. Security as relationships between objects

Cooperation between independent agents depends upon establishing a degree of
security. Each of the cooperating agents needs assurance that the cooperation will not
endanger resources of value to that agent. In a computer system, a computational
mechanism can assure safe cooperation among the system's users by mediating resource
access according to desired security policy. Such a mechanism, which is called a
security kernel, lies at the heart of many operating systems and programming
environments.

– Jonathan A. Rees, A Security Kernel Based on the Lambda Calculus

In Capability security as ordinary programming we demonstrated how a programming language
which uses lexical scoping and is strict about removing ambient authority is already likely an
excellent foundation for a capability secure architecture. In A taste of Goblins we saw Goblins'
powerful transactional distributed object programming system. This section shows the union of the
two: that the relationships between Goblins objects is an excellent, expressive, and sufficient
security model for networked programs.

To make this clear we will present a common tutorial: a blogging style system10 (in our case, used
by a community newspaper of an imagined town) with different users cooperating and performing
different roles. Unlike most such tutorials, this is accomplished without an access control list:
resources are protected from misuse without relying on checking the identity of the performing
agent. Despite this, we will manage to introduce accountability and revocation features, the
protection of misuse from unauthorized parties, and even the demonstration of a multiple-

10 This is not meant to be a "production-ready system", but an illustrative one. As one example limitation, the blog we
will build is runtime-only and does not persist between processes to disk. However, the general ideas described are
the foundation from which a more serious system could be built, and even persistence could be accomplished
through the mechanisms described in Safe serialization and upgrade.

11

http://mumble.net/~jar/pubs/secureos/secureos.html

stakeholder cooperation pattern which has no direct parallel in an access control system.

3.2.1. Making and editing a blogpost

Lauren Ipsdale has decided to run a newspaper for her local community. The first thing Lauren will
need is a way to construct individual posts which can be widely read, but edited only by trusted
editors.

Lauren creates a new post:

REPL> define-values (day-in-park-post day-in-park-editor)
_____ spawn-post-and-editor
_____ . #:title "A Day in the Park"
_____ . #:author "Lauren Ipsdale"
_____ . #:body "It was a good day to take a walk..."

(We will show implementation details of these blogposts below, but first we will focus on narrative
and use.)

spawn-post-and-editor returned two capabilities:

• day-in-park-post, which grants the authority to read Lauren's blogpost, but not to
make changes to it.

• day-in-park-editor, which grants the authority to modify the blogpost.

Lauren wants the feedback of her friend Robert, but wants to decide whether or not to make or
accept any changes herself. She shares day-in-park-post with Robert. Robert is able to view
the post by running:

REPL> display-post day-in-park-post

Which prints out:

A Day in the Park
=================
 By: Lauren Ipsdale

It was a good day to take a walk...

Robert tells Lauren that he likes the blogpost, but that "a fine day" might sound more pleasant than
"a good day" for the article's opening, and that maybe the name of the post should be "A Morning in
the Park". Robert, not having access to day-in-park-editor, cannot make the changes
himself.

Lauren deliberates on this feedback and decides that she agrees with the suggestion to change
"good" to "fine" but that she thinks her title is good as-is. Lauren makes the change:

REPL> $ day-in-park-editor 'update
_____ . #:body "It was a fine day to take a walk..."

1. Implementation

Since the "blog rendering" code is not essential to the demonstration of these security
properties, that code is not shown in this section. However, it is available in Appendix:
Utilities for rendering blog examples.

The implementation of the post and editor pairs is fairly simple.

define* (spawn-post-and-editor #:key title author body)
 ;; The public blogpost

12

 define (^post _bcom)
 methods
 ;; fetches title, author, and body, tags with '*post* symbol
 (get-content)
 define data-triple ; assign data-triple to
 $ editor 'get-data ; the current data
 cons '*post* data-triple ; return tagged with '*post*

 ;; The editing interface
 define (^editor bcom title author body)
 methods
 ;; update method can take keyword arguments for
 ;; title, author, and body, but defaults to their current
 ;; definitions
 (update #:key (title title) (author author) (body body))
 bcom : ^editor bcom title author body
 ;; get the current values for title, author, body as a list
 (get-data)
 list title author body

 ;; spawn and return the post and editor
 define post : spawn ^post
 define editor : spawn ^editor title author body
 values post editor ; multi-value return of post, editor

This procedure takes three optional keyword arguments, the initial title, author, and body of
the post.11 (If not supplied, they will default to #f, meaning "false".) It returns two values,
the post (which is the object which represents the readable blogpost), and the editor,
which allows for editing what viewers of the post see.

In this system, the editor is the more powerful object. It contains two methods:

• update: Allows for changing the data associated with the post. The bcom operation
calls ^editor again, producing new behavior with the same bcom capability but
updated (or not) versions of the title, author, and body.

• get-data: Retrieves the current title, author, and body associated with this post.

The post is considerably less powerful, and only has one method, get-content.
Curiously, get-content is a thin wrapper around the editor's get-data, merely
tagging the returned data with the symbol '*post*.

2. Analysis

With ordinary Goblins programming and a safe language environment, Lauren is able to
construct separate post and editor capabilities which refer to the same blogpost. Lauren is
able to choose who she hands these out to. Since Lauren shares the post capability with
Robert but not the editor capability, Robert is able to read the blogpost, but there is no
way for him to change its contents.

All of this is accomplished without any attention by the underlying system to the identities
of Lauren and Robert who are using the software, using ordinary reference passing
behaviors. This is important, because in Capability security as ordinary programming we
demonstrated that an identity-centric authority model is unsafe due to ambient authority and
confused deputy problems. The solution we demonstrated of a capability security as
ordinary argument passing extends into Goblins in a natural way. Since Goblins' object

11 Guile's define does not support keyword arguments, but define* does.

13

model is entirely built around behavior constructed from enclosed procedures, an object can
only make use of the references to other objects it possesses in its scope.

We have also chosen in this example to have post be a comparatively thin object to
editor, mostly proxying information which editor is in charge of, with a small type-
tagging symbol added. This demonstrates how one one less powerful object can achieve
most of its functionality by attenuating a more powerful object.

3.2.2. A blog to collect posts

Of course, a blogpost on its own is not itself a blog or newspaper. Lauren wants a collection of
updated posts, not just a singular entry. Time to make the blog!

Lauren invokes spawn-blog-and-admin:

REPL> define-values (maple-valley-blog maple-valley-admin)
_____ spawn-blog-and-admin "Maple Valley News"

spawn-blog-and-admin returns two capabilities. The first is for the blog itself, which Lauren
has locally bound to the variable maple-valley-blog only grants read access to the current set
of posts. maple-valley-admin provides the ability to curate the set of posts itself. Lauren has
a certain vision and standard of post quality she'd like to see held for Maple Valley News but would
like it to be widely read, and thus she will share and encourage wide dissemination of the former
capability but will more carefully guard the latter capability.

Since maple-valley-blog has just been initialized, it unsurprisingly reports having no posts:

REPL> $ maple-valley-blog 'get-posts
;; => ()

Since Lauren is now happy with day-in-park-post, she can add it via maple-valley-
admin, and maple-valley-blog will now report the new post's addition:

REPL> $ maple-valley-admin 'add-post day-in-park-post
REPL> $ maple-valley-blog 'get-posts
;; => (#<local-object ^post>)

The blog can now also be read with display-blog:

REPL> display-blog maple-valley-blog

Which prints the following:

** Maple Valley News **

A Day in the Park
=================
 By: Lauren Ipsdale

It was a fine day to take a walk...

Robert tells Lauren he'd love to make an article of his own, and Lauren says she'd love to read it and
see about including it. Robert pens a new post:

;; Run by Robert:
REPL> define-values (spelling-bee-post spelling-bee-editor)
_____ spawn-post-and-editor
_____ . #:title "Spelling Bee a Success"

14

_____ . #:author "Robert Busyfellow"
_____ . #:body "Maple Valley School held its annual spelling bee..."

Robert sends this to Lauren for review. Lauren says that it's good, but could use a catchier title.
Robert's years of community newspaper reporting leaves him with exactly the right idea for a
change:

;; Run by Robert:
REPL> $ spelling-bee-editor 'update
_____ . #:title "Town Buzzing About Spelling Bee"

Lauren checks the post and decides it's ready to go. She adds it to the blog:

REPL> $ maple-valley-admin 'add-post spelling-bee-post

Now maple-valley-blog is starting to look like it's got some real content going!

REPL> display-blog maple-valley-blog

** Maple Valley News **

Town Buzzing About Spelling Bee
===============================
 By: Robert Busyfellow

Maple Valley School held its annual spelling bee...

A Day in the Park
=================
 By: Lauren Ipsdale

It was a fine day to take a walk...

1. Implementation

Here is the core implementation of spawn-blog-and-admin:

;; Blog main code
;; ==============

define (spawn-blog-and-admin title)
 define posts
 spawn ^cell '()

 define (^blog _bcom)
 methods
 (get-title)
 . title ; return the title, as a value
 (get-posts)
 $ posts 'get ; fetch and return the value of posts

 define (^admin bcom)
 methods
 (add-post post)
 define current-posts
 $ posts 'get
 define new-posts
 cons post current-posts ; prepend post to current-posts
 $ posts 'set new-posts

15

 define blog : spawn ^blog
 define admin : spawn ^admin
 values blog admin

Here we see how lexical scope becomes a powerful feature for capability systems. posts, a
cell which stores the current state of which articles are valid posts for this blog, is within the
scope of the code for both blog and admin, which both utilize it within the scopes of their
constructors ^blog and ^admin internally. However, while blog and admin are
returned directly from spawn-blog-and-admin, posts never directly leaves the
closure. Thus posts becomes a fully encapsulated coordination point between blog and
admin.

2. Analysis

The similarity between the patterns of spawn-post-and-editor and spawn-blog-
and-admin is mostly clear, but what is interesting is in where they differ. While both
return two capabilities, one effectively for reading and one effectively for writing, spawn-
post-and-editor accomplished its job by having posts mostly proxy a subset of
behavior of editors. In spawn-blog-and-admin, the roles are completely separated,
and instead the encapsulated object of posts serves as the intermediary datastructure that
the two other objects both use to coordinate reading current information (with blog) and
writing current information (with admin).

3.2.3. Group-style editing

One implication from the way this code is currently written is that the blog is mostly a kind of
aggregator of posts. While Lauren added Robert's post to Maple Valley News's collection of
blogposts, since Robert did not share the edit capability with Lauren, Lauren cannot edit the post if
she discovers a problem.

This can be an acceptable design, but Lauren has decided that she would like to ensure that any
posts that are on the blog are editable by her or any other admins she gives access to. She also does
not want to have to keep track of which edit capability is associated with which post: if she is
looking at a post and catches an error, she wants to be able to jump straight into correcting it.
Lauren wants to make sure her blogging administration software helps her ensure she is only adding
objects which uphold these properties.

Under this rearchitecture, the admin interface is directly involved in constructing new posts and
editors:

REPL> define-values (bumpy-ride-post bumpy-ride-editor)
_____ spawn-adminable-post-and-editor
_____ . maple-valley-admin
_____ . #:title "Main Street's Bumpy Ride"
_____ . #:author "Lauren Ipsdale"

Using this approach, Lauren could edit bumpy-ride-post using bumpy-ride-editor, but
she does not need to since she can also use maple-valley-admin to edit:

REPL> $ maple-valley-admin 'edit-post
_____ . bumpy-ride-post
_____ . #:body "Anyone who's driven on main street recently..."

This new code also provides an assurance that any blogposts which are added are created through
the internals of the code which runs "Maple Valley News". It will not be possible for any other

16

object to spoof being a post which will not grant a user of maple-valley-admin the ability to
edit the post and still be added to the blog.

1. Pre-Implementation: Sealers and unsealers

This example relies on a concept called "sealers and unsealers". Sealers and unsealers have
an analogy with public key cryptography, where sealing resembles encryption, and
unsealing resembles decryption. A third component, a brand check predicate, can check
whether or not a sealed object was sealed by its corresponding sealer, and with a bit of work,
we will show it can operate as the equivalent of signature verification. What is astounding is
that all three of these operations can work without any cryptography at all, implemented
purely in programming language abstractions. (The details of implementing sealers and
unsealers can be seen in Appendix: Implementing sealers and unsealers.)

To make this clearer, let us imagine a scenario where we are sealing lunchtime meals using
sealers and unsealers. Our rival, who wishes to sabotage us, does the same:

REPL> define (our-lunch-seal our-lunch-unseal our-can?)
_____ make-sealer-triplet
REPL> define (rival-lunch-seal rival-lunch-unseal rival-can?)
_____ make-sealer-triplet

We give our customer the unsealer, the delivery driver the brand predicate, and we keep the
sealer privately to ourselves.

The contents of sealed cans are private:

REPL> our-lunch-seal 'fried-rice
;; => #<seal>

Our customer wants some chickpea salad, so we seal some for them:

REPL> define chickpea-lunch
_____ our-lunch-seal 'chickpea-salad

Thankfully our truck driver is able to check that the food they are to deliver really is from
us. (We have a reputation to uphold!)

REPL> our-can? chickpea-lunch
;; => #t (true)
REPL> our-can?
_____ rival-lunch-seal 'melted-ice-cream
;; => #f

And the customer is able to open it just fine:

REPL> our-lunch-unseal chickpea-lunch
;; => 'chickpea-salad

Whew!

2. Implementation

We will have to re-architect our post/editor and blog/admin tooling to enable this new
functionality, adding support for sealers and a few new methods.

To accomplish this, we should first import pattern matching support, which we will use
later:

use-modules
 ice-9 match ; for pattern matching

17

We then implement our new version of post/editor spawning. This will no longer be used
directly by users, so we also update its name, adding a -internal suffix.

define* (spawn-post-and-editor-internal blog-sealer #:key title author
body)
 ;; The public blogpost
 define (^post _bcom)
 methods
 ;; fetches title, author, and body, tags with '*post* symbol
 (get-content)
 define data-triple ; assign data-triple to
 $ editor 'get-data ; the current data
 cons '*post* data-triple ; return tagged with '*post*
 ;; *New*: get a sealed version of the editor from anywhere
 (get-sealed-editor)
 blog-sealer : list '*editor* editor
 ;; *New*: get a sealed version of self for self-attestation
 (get-sealed-self)
 blog-sealer : list '*post-self-proof* post

 ;; The editing interface
 define (^editor bcom title author body)
 methods
 (update #:key (title title) (author author) (body body))
 bcom : ^editor bcom title author body
 (get-data)
 list title author body

 ;; spawn and return the post and editor
 define post : spawn ^post
 define editor : spawn ^editor title author body
 values post editor

There are actually only three changes from our prior implementation, spawn-post-and-
editor:

• This version takes one required argument, blog-sealer, which will be passed in by
the admin object which creates the post/editor pair.

• We add two new methods to post:

• get-sealed-editor: Uses blog-sealer to seal the corresponding editor
object, allowing a relevant admin object to be able to unseal any post straight from
the post itself (analogous to encryption). The '*editor* symbol is stored within
the seal as a type tag indicating the purpose of the seal.

• get-sealed-self: Uses blog-sealer to seal the post itself to attest to the
admin that it was indeed created by the blog/admin code itself (analogous to a
cryptographic signature). Like the previous method, it also stores a type tag within
the seal indicating its purpose, here '*post-self-proof*.

We must also update our blog/admin spawning code so that it will be able to cooperate with
the post/editor code we have just defined:

define (new-spawn-blog-and-admin title)
 ;; New: sealers / unsealers relevant to this blog
 define-values (blog-seal blog-unseal blog-sealed?)
 make-sealer-triplet

 define posts

18

 spawn ^cell '()

 define (^blog _bcom)
 methods
 (get-title)
 . title
 (get-posts)
 $ posts 'get

 define (^admin bcom)
 methods
 ;; *New:* A method to create posts specifically for this blog
 (new-post-and-editor #:key title author body)
 define-values (post editor)
 spawn-post-and-editor-internal
 . blog-seal
 . #:title title
 . #:author author
 . #:body body
 list post editor

 ;; *Updated:* check that a post was made (and is updateable)
 ;; by this blog
 (add-post post)
 ;; (This part is the same as in the last version)
 define current-posts
 $ posts 'get
 define new-posts
 cons post current-posts ; prepend post to current-posts
 ;; *New*: Ensure this is a post from this blog
 ;; This is accomplished by asking the post to provide the sealed
 ;; version "of itself". The `blog-unseal` method will throw an
error
 ;; if it is sealed by anything other than `blog-seal
 define post-self-proof
 $ post 'get-sealed-self
 match : blog-unseal post-self-proof
 ('*post-self-proof* obj) ; match against tagged proof
 unless : eq? obj post ; equality check: same object?
 error "Self-proof not for this post"
 ;; Checks out, let's update the set of posts
 $ posts 'set new-posts

 ;; *New:* A method to edit any post associated with this blog
 (edit-post post #:rest args)
 define sealed-editor
 $ post 'get-sealed-editor
 define editor
 match : blog-unseal sealed-editor
 ('*editor* editor) ; match against tagged editor
 . editor
 apply $ editor 'update args

 values
 spawn ^blog
 spawn ^admin

Here we see several new additions:

• The blog calls make-sealer-triplet to instantiate blog-seal (the sealer),
blog-unseal (the unsealer), and blog-sealed? (the brand-check predicate).

19

• ^admin receives three key changes:

• New method: new-post-and-editor is used to create post/editor pairs by
running spawn-post-and-editor-internal (which was defined by the
previous code block).

• Updated method: add-post now checks that this is a post made by the blog itself.
This is accomplished by asking the post for its supplied self-proof. This self-proof is
returned sealed and must be unsealed by blog-unseal, which will throw an
exception if not sealed by blog-seal, ensuring this is a post created by (and thus
editable in the future by) the blog. The unsealed value should be a list tagged with
the purpose of '*post-self-proof* and the object to check, the latter of which
should have the same identity (compared via the identity-comparison procedure
eq?) as post.

• New method: edit-post allows for editing a post even without access to its
corresponding editor object. This is accomplished by calling the 'get-sealed-
editor method on a post. The admin interface uses the blog-unsealer to
extract the type-tagged editor. It uses apply to take the remaining arguments passed
into edit-post and passes them along to the unsealed editor.

Finally, this last bit is some convenience for consistency in our examples, since actors
cannot return multiple values from their behavior

define (spawn-adminable-post-and-editor admin . args)
 define post-and-editor
 apply $ admin 'new-post-and-editor args
 match post-and-editor
 (post editor) ; match against list of post and editor
 values post editor ; return as values for consistency in examples

3. Analysis

An administrator encountering a blogpost which is worth editing will want to edit it
immediately. In an access control list style system, the way to accomplish this would be to
assign users to an "editor" group, but we are building a system which aims to avoid the
security problems associated with traditional access control list and related identity-centric
authority systems.

Instead, we take an approach called rights amplification: a sealed capability is attached to
the post, giving access to the more powerful editor object, but this object can only be used
through the corresponding unsealer. The only object empowered to make use of the unsealer
is the blog's admin object, and so only by going through the admin is editing from the post
possible.

3.2.4. Revocation and accountability

Lauren decides that it may be time for her to not be the only person running things, but she wants to
make sure that she can hold anyone she gives access to accountable for the decisions they make
and, if something inappropriate happens, revoke that access.

Lauren realizes she can extend her system to accommodate this plan without rewriting any of the
existing code. Instead she will define some new abstractions that compositionally extend the system
that exists.

The first thing she will need is a logger.

20

REPL> define admin-log
_____ spawn ^logger

Robert has been a great collaborator and has expressed interest in helping run things. Lauren
decides it's time to take him up on it.

Lauren uses a new utility, spawn-logged-revocable-proxy-pair, which can proxy any
object and log actions associated with a username meaningful to Lauren:

REPL> define-values (admin-for-robert roberts-admin-revoked?)
_____ spawn-logged-revocable-proxy-pair
_____ . "Robert" ; username Lauren holds responsible
_____ . maple-valley-admin ; object to proxy
_____ . admin-log ; log to write to

The first of the two returned capabilities, admin-for-robert, is the one she sends Robert. The
second, roberts-admin-revoked?, is the cell which defaults to false, but Lauren can set to
be true at any time, at which point messages from Robert will no longer pass through.

Robert thanks Lauren for the capability and soon decides that Lauren's post would be better with a
different title:

REPL> <- editor-for-robert 'edit-post bumpy-ride-post
_____ . #:title "Main Street Takes Some Bumps"

Later, Lauren suddenly notices with irritation that her blogpost isn't named what she remembered it
being. She checks the log:

REPL> $ admin-log 'get-log
;; => ((*entry*
;; user "Robert"
;; object #<local-object ^admin>
;; args (edit-post #<local-object ^post>
;; #:title "Main Street Takes Some Bumps")))

Lauren decides that Robert shouldn't be editing her or anyone else's posts on the blog until they've
had a serious conversation.

REPL> $ roberts-admin-revoked? 'set #t

Robert tries to make another edit to the blogpost and notices that it didn't go through. He sees a
frustrated message in his inbox from Lauren and apologizes. The two of them agree on what the
proper etiquette for editing someone else's post should be in the future and Lauren feels satisfied
enough to renew Robert's access.

REPL> $ roberts-admin-revoked? 'set #f

1. Implementation

The logger should look fairly familiar by now:

define (^logger _bcom)
 define log
 spawn ^cell '() ; log starts out as the empty list

 methods
 ;; Add an entry to the log of:
 ;; - the username accessing the log
 ;; - the object they were accessing
 ;; - the arguments they passed in
 (append-to-log username object args)
 define new-log-entry

21

 list '*entry* 'user username 'object object 'args args
 define current-log
 $ log 'get
 define new-log
 cons new-log-entry current-log ; prepend new-log-entry
 $ log 'set new-log

 (get-log)
 $ log 'get

The revocable proxy pair takes the associated username, object to proxy, and log to write to:

define (spawn-logged-revocable-proxy-pair username object log)
 ;; The cell which keeps track of whether or not the proxy user's
 ;; access is revoked.
 define revoked?
 spawn ^cell #f

 ;; The proxy which both logs and forwards arguments (if not revoked)
 define (^proxy _bcom)
 lambda args
 ;; check if access has been revoked
 when ($ revoked? 'get)
 error "Access revoked!"
 ;; If not, first send a message to log the access
 <- log 'append-to-log username object args
 ;; Then proxy the invocation to the object asynchronously
 apply <- object args

 ;; The revoker only has one behavior. It is called with no
 ;; arguments and revokes access to the proxy.
 define (^revoker _bcom)
 lambda ()
 $ revoked? 'set #t

 define proxy
 spawn ^proxy

 values proxy revoked?

It returns two cells, the proxy, and the cell which is used to control whether or not access is
revoked.

2. Analysis

Since Robert is never given access to the admin object directly, he has to operate using the
admin-for-robert object which Lauren gives him. This object reports Robert's actions
to a log which Lauren controls and will only operate if Lauren decides not to flip the
revoked? cell to be true. Lauren is able to resume access through the capability should
she so choose by flipping the revoked? cell's value back to false.

Nothing is preventing Robert from sharing admin-for-robert with anyone else, but
Lauren will hold Robert accountable for any actions taken with the admin-for-robert
capability. This is a feature, and we will see it extended in the next section.

3.2.5. Guest post with review

Here's the story in shorthand, since I'm out of time:

• Robert has admin access resumed again

22

• He decides he's going on vacation but wants Matilda and her teacher to collaborate on a nice
blogpost for the newspaper while he's gone.

• He spawns:

;; Robert's interactions
REPL> define-values (science-fair-post science-fair-editor science-fair-
reviewer)
_____ spawn-post-guest-editor-and-reviewer "Matilda Sample" admin-for-robert

• science-fair-post is given to Matilda and Teacher (come up with a name) both

• science-fair-editor is given to Matilda only

• science-fair-reviewer is given to the Teacher only

• Matilda writes her post's body and asks the teacher if it's good enough

;; Matilda's interactions
REPL> $ science-fair-editor 'set-body
_____ . "My name is Matilda and I am twelve. I won the science fair..."

• the teacher says "you forgot to give this a title, and make this more engaging, tell more of a
story"

;; Matilda's interactions
REPL> $ science-fair-editor 'set-title
_____ . "Winning the Middle School Science Fair: A Personal Account"
REPL> $ science-fair-editor 'set-body
_____ . "At twelve years old, winning the local science fair has been..."

• the teacher looks at it again, looks good enough

;; Teacher's interactions
REPL> $ science-fair-reviewer 'approve

• and it goes live!

;; Runnable by any reader of the blog
REPL> display-blog maple-valley-blog

1. Implementation

;;; Guest post with review
;;; ======================

;; The restricted-editor user can only change the title and body, but
;; not their name.
;; They cannot conspire with their teacher to be someone else on the
;; newspaper.
;;
;; The teacher cannot do anything but approve the student's post to
;; go live. They cannot change the student's choice of language,
;; only ask them to change it before approval.

define (spawn-post-guest-editor-and-reviewer author blog-admin)
 define-values (post editor)
 spawn-post-and-editor #:author author

 define submitted-already?
 spawn ^cell #f

 define (ensure-not-submitted)

23

 when : $ submitted-already? 'get
 error "Already submitted!"

 define (^reviewer _bcom)
 methods
 (approve)
 ensure-not-submitted
 $ blog-admin 'add-post post
 $ submitted-already? 'set #t

 define (^restricted-editor _bcom)
 methods
 (set-title new-title)
 ensure-not-submitted
 $ editor 'update #:title new-title
 (set-body new-body)
 ensure-not-submitted
 $ editor 'update #:body new-body

 define reviewer : spawn ^reviewer
 define restricted-editor : spawn ^restricted-editor
 values post restricted-editor reviewer

2. Analysis

3.3. The vat model of computation

Goblins follows what is called the vat model of computation. A vat is simply an event loop that
manages a set of objects which are near to each other (and similarly, objects outside of a vat are far
from each other).

.----------------------------------. .----------------------.
Machine 1		Machine 2
=========		=========
.--------------. .---------. .-. .-.		
	Vat A	
	.---.	
	(Alice)----------->(Bob)----' '-' '-'	
	'---'	
	\	'----^----'
	V	
	.----.	
	(Alfred)	'-------/
	'----'	\
		'-' '-' '------------'
'--------------'		
'----------------------------------' '----------------------'

Objects which are near can perform synchronous call-return invocations in a manner familiar to
most sequential programming languages used by most programmers today. Aside from being a
somewhat more convenient way to program, sequential invocation is desirable because of cheap
transactionality, which we shall expand on more later. In Goblins, we use the $ operator to perform
synchronous operations.

Both near and far objects are able to invoke each other asynchronously using asynchronous
message passing (in the same style as the classic actor model). It does not generally matter whether
or not a far object is running within the same OS process or machine or one somewhere else on the

24

network for most programming tasks; asynchronous message passing works the same either way. In
Goblins, we use the <- operator to perform asynchronous operations.

For both programmer convenience and for networked efficiency, Goblins supports promise
pipelining: messages can be sent to promises which have not yet resolved, and will be forwarded to
the target once the promise resolves. The sender of the message is handed back a promise to which
it can supply callbacks, listening for the promise to be fulfilled with a value or broken (usually in
case of an unexpected error).

As usual in the vat model of computation, individual message sends to a vat (event loop) are queued
and then handled one turn at a time, akin to the way board game players take turns around a table
(which is indeed the basis for the term turn).

The message, addressing a specific object, is passed to the recipient object's current behavior. This
object may then invoke other near objects (residing within the same vat), which may themselves
invoke other near objects in a synchronous and sequential call-return style familiar to most users of
most contemporary programming languages. Any of these invoked objects may also change their
state/behavior (behavior changes appear purely functional in Goblins; invocations of other actors do
not), spawn new objects, invoke ordinary expressions from the host language, or send asynchronous
messages to other objects (which are only sent if the turn completes successfully).

While the vat model of computation is not new (it originates in the E programming language and
can trace some of its ideas back to E's predecessor Joule, and has since reappeared in systems such
as Agoric's SwingSet kernel), Goblins brings some novel contributions to the table in terms of
transactionality and time-travel debugging, enhancing an already powerful distributed programming
paradigm.

3.4. Turns are cheap transactions
 .-----------------------.
 |Internal Vat Schematics|
 '======================='

 stack heap
 ($) (actormap)
 .-------.----------------------. -.
 | | | |
 | | .-. | |
 | | (obj) .-. | |
 | | '-' (obj) | |
 | __ | '-' | |
 | |__>* | .-. | |- actormap
 | __ | (obj) | | territory
 | |__>* | '-' | |
 | __ | | |
 | |__>* | | |
 :-------'----------------------: -'
queue | __ __ __ | -.
 (<-) | |__>* |__>* |__>* | |- event loop
 '------------------------------' -' territory

Special to Goblins is the transactional nature of vat turns: unhandled errors result in a turn being
rolled back automatically (or more accurately, simply never being committed to the root
transactional heap), preventing unintended data corruption. This cheap transactionality means that
errors in Goblins are much less eventful and dangerous to deal with than in most asynchronous
programming languages. Significantly less effort needs to be spent on cleanup when time is

25

https://github.com/Agoric/agoric-sdk/tree/master/packages/SwingSet
https://agoric.com/
http://erights.org/history/joule/
http://erights.org/

reverted to a point where a mess never occured.12

3.5. Time-travel distributed debugging

The same transactional-heap design of Goblins can be used for other purposes. A distributed
debugger inspired by E's Causeway is planned, complete with message-tracing mechanisms. This
will be even more powerful when combined with already-demonstrated time travel features,13
allowing programmers to debug a program in the state of an error when it occured.

3.6. Safe serialization and upgrade
Do you, Programmer,
 take this Object to be part of the persistent state of your application,
 to have and to hold,
 through maintenance and iterations,
 for past and future versions,
 as long as the application shall live?

 —Arturo Bejar

Processes crash or close and must be resumed. Behavior changes and representations must change
to accommodate such change. Goblins has an integrated serialization mechanism which simplifies
serialization and upgrade.

The need for state persistence and upgrade is hardly unique to Goblins programs. Much of
programming traditionally involves reading and writing state of a program to a more persistent
medium, generally files on a disk or some specialized database. Web applications in particular
spend an enormous amount of effort moving between database representations and runtime
behavior, but translating between runtime behavior and persistent state is typically disjoint and its
solution space complicated.

Since Goblins' security model is encoded within the underlying runtime graph, manually scribing
and restoring this structure would be a Sisyphean task in terms of labor and, should we naively trust
objects' own self-descriptions, an entry point for vulnerability.

As an example, consider a multiplayer fantasy game might have to keep track of many rooms, the
inhabitants of those rooms including various monsters and players, players' inventory, and many
clever other objects and mechanisms which might even be defined while the game is running. Ad-
hoc serialization of such a system would be too hard to keep our heads on straight about, and so we
would like some way of having our system do the serialization of our process for us. Asking the
objects to self-describe or manipulate the underlying database could also be dangerous, as objects

12 It is well known that the introduction of time and the introduction of local state are the same, introducing both
benefits and costs. Purely functional systems model local state without introducing side effects by using monads,
which re-introduces the benefits of time without being locked into changes which have occured. In other words:
functional programming with monads grants freedom from time. Monads are powerful and beautiful constructs but
are notorious for being difficult to learn to use (though learning to use them sometimes becomes a programmer point
of pride), introducing enormous amounts of explicit plumbing outward to the user, threaded manually through a
user's code. Goblins' design can be perceived as having an implicit monad which grants the user the benefits of time-
travel without the explicit plumbing, allowing the user to focus on the core object behavior aspects of their program.
The ability to be productively oblivious to the above is a goal: most users will never even know or consider the idea
that Goblins contains an implicit monad unless they enjoy reading footnotes of architectural papers.

13 One early demonstration of this idea was shown in the runs-in-your-terminal space shooter game Terminal Phase,
built as a demo to show off Spritely Goblins. The entire core game was built before even considering that time travel
would be an easy feature to add, and a time travel demonstration was added within less than three hours changing no
core game code but merely wrapping the toplevel of the program; its design fell out naturally from what Goblins
already provided in the way it was used.

26

http://www.erights.org/elang/tools/causeway/index.html
https://dustycloud.org/blog/goblins-time-travel-micropreview/
https://gitlab.com/dustyweb/terminal-phase
https://mitpress.mit.edu/sites/default/files/sicp/full-text/sicp/book/node54.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/sicp/book/node53.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/sicp/book/node51.html

could claim to have authority that they do not… for example, in our game, we would not want
player-built objects to be able to claim or dispense in-game currency or grant themselves powers
which they did not originally have on restoration.

One option would be to use an underlying language runtime serialization system (many lisp and
smalltalk systems have supported this for decades). However, this is wasteful; most serialized
systems can be restored from a recipe of their construction rather than their current state at a
fraction of the storage cost. Furthermore, the structure of our objects will be subject to change over
time, and language-based process persistence misses out an opportunity to treat restoration as an
opportunity for upgrade.

Spritely Goblins' solution is a serialization mechanism which asks objects how they would like to
be serialized, but only allows objects to provide self-portraits utilizing the permissions they already
have.14,15 Goblins' serializer starts with root objects and calls a special serializer method on each
object, asking each object for its depiction. This serialization mechanism is sealed off from normal
usage; only the serializer can unseal it, preventing objects from interrogating each other for
information or capabilities they should not have access to.16

Since walking the entire object graph is expensive, we can take advantage of reading turn-
transaction-delta information to only serialize objects which have changed, making our serialization
system performant.

The system is restored by walking the graph in reverse and applying each self-portrait to its build
recipe. Restoring an object ends up being a great time to run upgrade code and as we build out
Goblins we plan to capture many upgrade patterns into a common library.

The serialized graph can be used for another purpose: we can use it to create a running visualization
of a stored ocap system, further helping programmers debug systems and understand the authority
graph of a running system.

3.7. Distributed behavior and why we need it

In general when we have spoken so far in this paper of distributed objects, we have been referring
to objects with one specific "location". But many systems are actually more complicated than this.
For example, Alisha and Ben might both be in the same chatroom and there may be a distinct
address for Alisha and Ben's personas; if we ask whether or not Carol means the same Alisha as
Ben, she should have no problem saying "yes, this is the same person", and this can be as simple as
address comparison.17

The Unum Pattern is a conceptual framework that encompasses the idea of a distributed abstract

14 The ideas for our serialization/upgrade mechanism stem from comments from comments by Jonathan A. Rees about
"uneval" and "unapply" and the E programming language's Safe Serialization Under Mutual Suspicion paper (along
with discussions between Randy Farmer and Mark S. Miller while at Electric Communities which preceded this).

15 Originally we had built this system as a separate mechanism we called Aurie, symbolized by a character made out of
fire which was continuously extinguished and re-awakened like a phoenix. However we discovered that many
programs, and even many of the standard library pieces which Goblins ships with, were in want of such a system, so
Aurie's flame became folded into Goblins itself.

16 This is a common ocap pattern called rights amplification which is beyond the scope of this paper to explain but
which is worth looking up.

17 Actually, saying that this is "as simple as address comparison" is the greatest misleading statement in this entire
paper. Object identity through address comparison, frequently referred to as EQ based on the operator borrowed
from lisp systems, is one of the most complicated talks debated in the object capability security community. See also
the erights.org pages on Object Sameness and the Grant Matcher Puzzle. These are just the tip of the iceberg of EQ
discussion and debate in the ocap community, and it's no surprise why: when identity is handled incorrectly it can
accidentally behave as a Access Control List or inherit their problems of ambient authority and confused deputies.
This is part of the value of finding patterns, to help prevent users from falling into these traps.

27

http://habitatchronicles.com/2019/08/the-unum-pattern/
http://erights.org/elib/equality/grant-matcher/index.html
http://www.erights.org/elib/equality/same-object.html
http://www.erights.org/
http://erights.org/data/serial/jhu-paper/index.html
https://odontomachus.wordpress.com/2020/12/09/pickling-uneval-unapply/

object with many different presences. One difference between the framing provided by the unum
pattern and most other distributed pattern literature is that the unum pattern is particularly interested
in distributed behavior rather than distributed data. Distributed data may be emergent from
distributed behavior, but it is only one application. In the unum pattern, many different presences
cooperate together performing different roles, sometimes even responding to messages in a manner
semi-opaque to each other.

Consider a teacup sitting on a table in a virtual world. Where does it live? On the server? What
about its representation in your client? What about the representation on another player's client?
What about in your mind? While there is one unum, or "conceptual object", of the teacup, there are
likely many presences representing it. Information and authority pertaining to the teacup may also
be asymmetric;18 you might know that the teacup has a secret note sealed inside it and I might not.
While there may be one object which is the canonical presence, possibly serving as a source of
shared identifier to refer to the object, the canonical presence is still a presence.19

Presences in Goblins typically correspond to Goblins objects.20 The unum pattern is typically
implemented via several messaging patterns: the reply pattern, the point-to-point pattern, the
neighbor pattern, and the broadcast pattern. Keen observers might notice that a subset of the unum
pattern, applied to data, is a publish-subscribe (PubSub) system, which is common in social media
architecture design (ActivityPub is more or less a glorified data-centric publish-subscribe classic
actor model implementation designed for social media on the web). For large-scale distribution of
messages, the Amphitheater Pattern will be supported.

However, in recent times there have been advancements in convergent information architectures
with research on conflict-free replicated data types. Goblins plans on implementing a standard
library of CRDT patterns which can be thought of as a "unum construction kit".

4. OCapN: A Protocol for Secure, Distributed Systems
Users have faced an impossible choice: between the full authority to get your work done
and destroy your machine or authority so puny that you can't do anything useful with it.
And if you grant full authority you are toast! Object capabilities enable you at many
different scales to create easy-to-understand secure cooperation.

If your cooperation has no security you will quickly find that the number of people you
dare to cooperate with is limited. Unless you have security, you can only cooperate with
your closest friends. By making this cooperation secure, we enable you to cooperate
with people whom you do not fully trust. So if you want to do cooperation, you do
indeed care about security.

18 Exploiting asymmetric authority is the very definition of the confused deputy problem. Its cause is usually emergent
from ambient authority. Phishing attacks are an example of confused deputy problems where the confused deputy is
a human being. Most object capability programming does not have confused deputy issues because to have a
reference to a capability, in the general case, means to have authority to it. However, EQ and rights amplification
(which bottoms out in a kind of EQ) both can re-introduce asymmetry, permitting confused deputies in careless
designs, even to ocap systems. One might suggest removing identity comparison altogether from such systems, and
for many ocap programs this is possible. However a social system is not very useful without identity, so we must
develop patterns that treat identity with care.

19 The above explanation is modified directly from Chip Mornignstar's explanation of the Unum. Chip Morningstar co-
founded both Lucasfilms Habitat and Electric Communities (with EC Habitat), both of which are enormous
influences on Spritely's design.

20 Outside of Goblins, presences still may exist; it is still acceptable to consider your conception of a teacup to be a
presence. Barring significant advancements in biomechanical integration, presences in your mind of a teacup
probably are not represented directly by a Goblins object.

28

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
http://www.erights.org/elib/distrib/unum/index.html
http://habitatchronicles.com/2019/08/the-unum-pattern/

– Marc Stiegler, From Desktop to Donuts: Object-Caps Across Scales

OCapN (the Object Capability Network)

• CapTP: Distributed, secure networked object programming. Provides familiar message
passing patterns, no distinction between asynchronous programming against local vs remote
objects.

• Distributed garbage collection: servers can cooperate to free resources that are no longer
needed

• Promise pipelining: massive parallelization and network optimization. provides
convenience of sequential programming without round trips.

• Netlayers: abstract interface for establishing secure connections between two parties

• Temporal connection abstraction: live session vs store and forward

• Peer to peer and traditional client-server support

• Quorum…! (Blockchains!)

• URI structure and certificates for establishing connections to servers and initial object
connections

5. Application and library safety
• Language: All modules are untrusted by default. Loading a module doesn't mean it can do

dangerous things.

• OS: All programs are untrusted by default. Loading a program doesn't mean it can do
dangerous things.

• The same approach taken for ocap programming applies to language and OS safety: pass
around capabilities to do things such as file operations, network access, reading from the
keyboard, etc. (Solitaire example)

• "Sandboxing" is not enough if it doesn't allow for granting new permissions at runtime.
You'll end up with too rigid of systems which means people will pass in more authority than
they should. (Needs better framing, or link off-site to something.)

• Graphical interfaces for understanding and granting permissions

6. Portable, encrypted storage
• Some kinds of distributed files where the contents of the stored files aren't known or of

concern to the hosting provider

• There is no "official" host for those files… anyone who has them can keep them alive

• We want both immutable file types and mutable types

29

https://www.youtube.com/watch?v=vrbmMPlCp3U

7. Conclusions

8. Appendix: Related work

9. Appendix: Following the code examples

10. Appendix: A small scheme and wisp primer

11. Appendix: Utilities for rendering blog examples
;; Blogpost rendering utilities
;; ============================
use-modules
 ice-9 match ; for pattern matching

define (display-post-content post-content)
 match post-content
 ('*post* post-title post-author post-body)
 let* ((title (or post-title "<<No Title>>"))
 (title-underline (make-string (string-length title) #\=))
 (author (or post-author "<<Anonymous>>"))
 (body (or post-body "<<Empty blogpost!>>")))
 display
 format #f "~a\n~a\n By: ~a\n\n~a\n"
 . title title-underline author body

define (display-blog-header blog-title)
 define header-len
 + 6 (string-length blog-title)
 define title-stars
 make-string header-len #*
 display
 format #f "~a\n** ~a **\n~a\n"
 . title-stars blog-title title-stars

define (display-post post)
 display "\n"
 display-post-content
 $ post 'get-content
 display "\n"

define (display-blog blog)
 display-blog-header
 $ blog 'get-title
 for-each display-post
 $ blog 'get-posts

12. Appendix: Implementing sealers and unsealers
There are two ways to construct sealers and unsealers; one is the "coat check" pattern,21 the other is
the language-protected dynamic type construction pattern. The latter has less complications

21 The coat check pattern can be implemented and explained easily also: the coat is the value to be sealed, the sealer is
the coat check desk, the ticket for later retrieval the sealed object, and the coat retrieval desk the unsealer. However
this involves extra work to avoid garbage collection concerns amongst other issues; see "2.3.3 The Case for Kernel
Support" in A Security Kernel Based on the Lambda Calculus.

30

http://mumble.net/~jar/pubs/secureos/secureos.html

surrounding garbage collection and leads to some real "a-ha" moments, so we will show that one
here.

To make this work, we will use dynamically constructed type-records (as taken from the SRFI-9
scheme extension). In Guile, we must import the following:

use-modules
 srfi srfi-9
 srfi srfi-9 gnu

To understand how these records work in the general case, here is an example of a srfi-9 record
used to define a 2d positional object which we'll call <pos>:

define-record-type <pos> ; <pos>: name of the type
 make-pos x y ; make-pos: constructor, takes two arguments
 . pos? ; pos?: brand-check predicate (is it a pos?)
 x pos-x ; pos-x: accessor for x
 y pos-y ; pos-y: accessor for y

Use of this pos is simple enough:

REPL> define our-pos
_____ make-pos 2 3
REPL> pos-x our-pos
;; => 2
REPL> pos-y our-pos
;; => 3

Following from this, let's look at how make-sealer-triplet works:

;; Make a sealer, unsealer, and brand-check predicate using
;; dynamic type generation.
define (make-sealer-triplet)
 define-record-type <seal>
 seal val ; constructor (sealer)
 . sealed? ; predicate (brand-check)
 val unseal ; accessor (unsealer)

 ;; Prevents snooping on contents at REPL, etc
 define (print-seal _rec port)
 display "#<sealed>" port
 set-record-type-printer! <seal> print-seal

 ;; Return sealer, unsealer, sealed? predicate
 values seal unseal sealed?

Within an invocation of make-sealer-triplet, we are defining a new <seal> type on the
fly which will be completely distinct from any made during future invocations of make-sealer-
triplet. The sealer is the constructor (accepting one argument, the sealed val), the brand-check
is the type predicate, and the unsealer is the accessor of the sealed val. If running in a language
argument which does not allow the user to piece apart a record without its corresponding accessor,
there is no way to retrieve the associated value without the unsealer.

13. Appendix: Glossary
• Actor:

• Ambient authority:

• Auditor:

31

https://srfi.schemers.org/srfi-9/srfi-9.html
https://srfi.schemers.org/srfi-9/srfi-9.html

• Authority:

• Behavior-oriented:

• Capability:

• CapTP:

• Causeway:

• Classic actor model:

• Confused deputy:

• Data-oriented:

• Distributed object programming:

• E:

• Guile:

• Joule:

• Lisp:

• Machine:

• Monad:

• Netlayer:

• Network:

• OCapN:

• Object:

• Object capability (security, discipline):

• Object graph:

• Permission:

• Presence:

• Promise pipelining:

• Racket:

• Rights amplification:

• Safe serialization:

• Sealers and unsealers:

• Scheme:

• Swingset:

• Spritely:

• Transaction:

• Turn:

• Unum:

• Uneval / Unapply:

32

• Vat:

• W7:

• Wisp:

14. Appendix: Acknowledgments
An enormous number of people reviewed and provided feedback to this paper. Thank you to: Alan
Karp, Baldur Jóhannsson, Chris Hibbert, Dan Connolly, Dan Finlay, Douglas Crockford, Jessica
Tallon, Jonathan A. Rees, Jonathan Frederickson, Mark S. Miller, and Stephen Webber. (NOTE: if
you think you should/shouldn't be on this list, let us know and we'll edit appropriately!)

Thank you to Mark S. Miller who personally spent enormous amounts of time walking Christine
through object capability ideas through the years and provided guidance on how to properly
represent granovetter diagrams (which, as applied to object capability systems, really are a powerful
but underdocumented visual language). Thank you to Jessica Tallon who actively used Spritely
Goblins during the production of this paper, allowing for feedback from direct experience, including
many suggestions for improvements in the examples. Thank you to Arne Babenhauserheide, who
developed the Wisp syntax for lisp used in this paper.

15. Appendix: ChangeLog
• [2022-04-02 Sat] release:

• Promise pipelining examples added to A Taste of Goblins. This section was already
planned but raised much interest in pre-review.

• Make tagging list with cons in ^post a bit easier to understand

• First batch of the smaller of the changes suggested by Alan Karp (a whole bunch, should
iterate…)

• Incorporated feedback from Jessica Tallon

• Explained how Solitaire gets access to keyboard and mouse

• Switched reference from ^mcell to ^cell… oops, that's what I get from copy-
pasting code from another document

• Renamed our-cgreeter to julius in example

• Fixed expected displayed message in "heard back" part

• No longer use named let but the ^editor contstructor, reflect that in surrounding
text

• Mention cons prepends to a list where appropriate

• Fixed "Run by Robert" which had mistakenly said it was run by Lauren

• Make it clearer that Lauren will hold Robert responsible for anyone who uses
admin-for-robert (including someone Robert delegates authority to).

• Moved sealers and unsealers implementation details to Appendix: Implementing
sealers and unsealers

33

	1. Introduction
	2. Capability security as ordinary programming
	3. Spritely Goblins: Distributed, transactional object programming
	3.1. A taste of Goblins
	3.1.1. A simple greeter
	3.1.2. State as updating behavior
	3.1.3. Objects which contain objects
	3.1.4. Asynchronous message passing
	3.1.5. Transactions make errors survivable
	3.1.6. Promise pipelining
	3.1.7. Errors propagate through pipelines

	3.2. Security as relationships between objects
	3.2.1. Making and editing a blogpost
	3.2.2. A blog to collect posts
	3.2.3. Group-style editing
	3.2.4. Revocation and accountability
	3.2.5. Guest post with review

	3.3. The vat model of computation
	3.4. Turns are cheap transactions
	3.5. Time-travel distributed debugging
	3.6. Safe serialization and upgrade
	3.7. Distributed behavior and why we need it

	4. OCapN: A Protocol for Secure, Distributed Systems
	5. Application and library safety
	6. Portable, encrypted storage
	7. Conclusions
	8. Appendix: Related work
	9. Appendix: Following the code examples
	10. Appendix: A small scheme and wisp primer
	11. Appendix: Utilities for rendering blog examples
	12. Appendix: Implementing sealers and unsealers
	13. Appendix: Glossary
	14. Appendix: Acknowledgments
	15. Appendix: ChangeLog

